Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Front Physiol ; 13: 893149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634155

RESUMO

Erythropoietic response is controlled not only by erythropoietin but also by iron. In addition to its role in iron delivery, transferrin also functions as a signaling molecule, with effects on both iron homeostasis and erythropoiesis. We investigated hematologic parameters, iron status and expression of key proteins, including the hepatic iron regulatory protein hepcidin and the suppressive erythroid factor Erfe, in mice subject to dietary iron deficiency with and without anemia. The acute effect of iron on these parameters was investigated by administration of exogenous iron-loaded transferrin (holoTf) in each of the mouse models. Serum iron in mice with iron deficiency (ID) is modestly lower with hematologic parameters maintained by utilization of iron stores in mice with ID. As expected, erythropoietin expression and concentration, along with marrow Erfe are unaffected in ID mice. Administration of holoTf restores serum iron and Tf saturation levels to those observed in control mice and results in an increase in hepcidin compared to ID mice not treated with holoTf. The expression of the Bmp signaling molecule Bmp6 is not significantly increased following Tf treatment in ID mice. Thus, the expression level of the gene encoding hepcidin, Hamp1, is increased relative to Bmp6 expression in ID mice following treatment with holoTf, leading us to speculate that Tf saturation may influence Bmp sensitivity. In mice with iron deficiency anemia (IDA), decreased hematologic parameters were accompanied by pronounced decreases in serum and tissue iron concentrations, and an increase in serum erythropoietin. In the absence of exogenous holoTf, the greater serum erythropoietin was not reflected by an increase in marrow Erfe expression. HoloTf administration did not acutely change serum Epo in IDA mice. Marrow Erfe expression was, however, markedly increased in IDA mice following holoTf, plausibly accounting for the lack of an increase in Hamp1 following holoTf treatment in the IDA mice. The increase in Erfe despite no change in erythropoietin suggests that Tf acts to increase erythropoietin sensitivity. These observations underscore the importance of Tf in modulating the erythropoietic response in recovery from iron deficiency anemia, with implications for other stress erythropoiesis conditions.

6.
Blood ; 136(19): 2099-2100, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152087
7.
Neonatology ; 117(4): 474-479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32818935

RESUMO

INTRODUCTION: The basis for the superior absorption of iron from breast milk compared with infant formulas is unclear. The hormone hepcidin downregulates dietary iron absorption. Hepcidin production increases with increased body iron status (reflected in serum ferritin levels). We hypothesized that serum hepcidin levels are suppressed relative to iron status in infants fed breast milk compared with formula. METHODS: Subjects were healthy infants presenting for routine 2-month clinic visit and strictly fed either breast milk or standard infant formula. Urinary hepcidin and ferritin levels (reflective of serum levels) were analyzed and compared across the breast milk- and formula-fed groups. The relationship between urinary hepcidin and ferritin levels within each group was analyzed by linear regression. RESULTS: Twenty-four subjects were enrolled in each group. The median urinary hepcidin level in the group fed breast milk was lower than in formula (130 vs. 359 ng hepcidin/mg creatinine, p < 0.05). However, the median ferritin levels were similar (2.1 vs. 1.9 ng/mL). Within each group, urinary hepcidin correlated with urinary ferritin (r = 0.5, p < 0.05 for each group); however, the slope of the regression line was lower in the group fed breast milk compared with formula (p < 0.005). CONCLUSION: Despite similar urinary ferritin levels, urinary hepcidin levels are lower at 2 months in infants fed breast milk compared with infants fed formula. Hepcidin levels correlate with iron status in each group; however, this relationship is relatively dampened in infants fed breast milk. We speculate that relatively lower infant hepcidin contributes to the superior efficiency of iron absorption from breast milk.


Assuntos
Hepcidinas , Leite Humano , Aleitamento Materno , Feminino , Ferritinas , Humanos , Lactente , Fórmulas Infantis
8.
J Clin Invest ; 130(2): 590-592, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845907

RESUMO

Although iron deficiency continues to pose a problem for pregnant women and fetal development, an incomplete understanding of placental adaptation to limited iron availability has hindered efforts to identify optimal supplementation strategies. In this issue of the JCI, Sangkhae et al. used mouse models and human placentas to explore maternal, placental, and fetal responses to alterations in iron status during pregnancy. The authors identified molecular mechanisms that limit placental ability to upregulate iron transport in the setting of severe iron deficiency and explored a potential marker of placental maladaptation.


Assuntos
Ferro , Placenta , Animais , Feminino , Desenvolvimento Fetal , Feto , Homeostase , Humanos , Camundongos , Gravidez
9.
Blood ; 134(17): 1373-1384, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31434707

RESUMO

Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.


Assuntos
Eritropoese , Ferro/metabolismo , Transferrina/metabolismo , Animais , Sítios de Ligação , Contagem de Eritrócitos , Eritropoetina/metabolismo , Feminino , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferrina/química , Transferrina/genética
10.
J Nutr ; 149(3): 406-415, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770543

RESUMO

BACKGROUND: It has been proposed that the fetus prioritizes iron for hemoglobin production over delivery to tissues. However, few studies have evaluated the interrelations between hemoglobin and multiple iron status biomarkers in umbilical cord blood. A full understanding is needed of how these parameters influence each other within cord blood to fully interpret iron and hematologic status at birth. OBJECTIVES: We evaluated the determinants of neonatal hemoglobin and assessed the interrelations between hemoglobin, serum iron status indicators, and serum iron regulatory hormones in healthy neonates. METHODS: This was an observational study that assessed umbilical cord hemoglobin (Hb), serum ferritin (SF), erythropoietin (EPO), soluble transferrin receptor (sTfR), serum iron, hepcidin, vitamin B-12, folate, IL-6, and CRP measured in 234 neonates born to adolescents or to women carrying multiples. Correlations between these indicators were evaluated and mediation models consistent with the observed significant determinants of cord Hb concentrations were developed. RESULTS: A highly significant inverse association was found between cord SF and Hb concentrations that was not attributable to neonatal or maternal inflammation (as measured by IL-6 and CRP). The inverse association was present in the combined cohort, as well as in the adolescent and multiples cohorts independently. Mediation analyses found that EPO and hepcidin had significant indirect effects on cord Hb, associations that are explicable by mediation through SF and sTfR. CONCLUSION: In contrast to observations made in older infants, a highly significant inverse association between Hb and SF, as well positive associations between Hb and both sTfR and EPO, were observed in umbilical cord blood from neonates born to adolescents or women carrying multiples. These findings, combined with review of the published literature, indicate a need for analysis of the relations between multiple parameters to assess iron and hematologic status at birth. These clinical trials were registered at clinicaltrials.gov as NCT01582802 (https://clinicaltrials.gov/ct2/show/NCT01582802) and NCT01019902 (https://clinicaltrials.gov/ct2/show/NCT01019902).


Assuntos
Ferritinas/sangue , Sangue Fetal/química , Hemoglobinas/metabolismo , Deficiências de Ferro , Gravidez Múltipla , Adolescente , Adulto , Biomarcadores/sangue , Feminino , Humanos , Recém-Nascido , Inflamação/sangue , Inflamação/metabolismo , Masculino , Gravidez
12.
J Vis Exp ; (131)2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29364234

RESUMO

Decreased red cell deformability is characteristic of several disorders. In some cases, the extent of defective deformability can predict severity of disease or occurrence of serious complications. Ektacytometry uses laser diffraction viscometry to measure the deformability of red blood cells subject to either increasing shear stress or an osmotic gradient at a constant value of applied shear stress. However, direct deformability measurements are difficult to interpret when measuring heterogenous blood that is characterized by the presence of both rigid and deformable red cells. This is due to the inability of rigid cells to properly align in response to shear stress and results in a distorted diffraction pattern marked by an exaggerated decrease in apparent deformability. Measurement of the degree of distortion provides an indicator of the heterogeneity of the erythrocytes in blood. In sickle cell anemia, this is correlated with the percentage of rigid cells, which reflects the hemoglobin concentration and hemoglobin composition of the erythrocytes. In addition to measuring deformability, osmotic gradient ektacytometry provides information about the osmotic fragility and hydration status of erythrocytes. These parameters also reflect the hemoglobin composition of red blood cells from sickle cell patients. Ektacytometry measures deformability in populations of red cells and does not, therefore, provide information on the deformability or mechanical properties of individual erythrocytes. Regardless, the goal of the techniques described herein is to provide a convenient and reliable method for measuring the deformability and cellular heterogeneity of blood. These techniques may be useful for monitoring temporal changes, as well as disease progression and response to therapeutic intervention in several disorders. Sickle cell anemia is one well-characterized example. Other potential disorders where measurements of red cell deformability and/or heterogeneity are of interest include blood storage, diabetes, Plasmodium infection, iron deficiency, and the hemolytic anemias due to membrane defects.


Assuntos
Anemia Falciforme/sangue , Deformação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Viscosidade Sanguínea , Eritrócitos/citologia , Humanos , Estresse Mecânico
13.
Blood ; 130(19): 2049-2050, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122771
14.
Glob Pediatr Health ; 4: 2333794X17703836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491927

RESUMO

Professional societies have published recommendations for iron dosing of preterm neonates, but differences exist between guidelines. To help develop standardized guidelines, we performed a 10-year analysis of iron dosing in groups at risk for iron deficiency: IDM (infants of diabetic mothers), SGA (small for gestational age), and VLBW premature neonates (very low birth weight, <1500 g). We analyzed iron dosing after red cell transfusions and erythropoiesis-stimulating agents (ESA). Of IDM, 11.8% received iron in the hospital; 9.8% of SGA and 27.1% of VLBW neonates received iron. Twenty percent of those who received iron had it started by day 14; 63% by 1 month. Supplemental iron was stopped after red cell transfusions in 73% of neonates receiving iron. An ESA was administered to 1677, of which 33% received iron within 3 days. This marked variation indicates that a consistent approach is needed, and using this report and a literature review, we standardized our iron-dosing guidelines.

15.
Blood Cells Mol Dis ; 65: 41-50, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28472705

RESUMO

Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA2. To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA2. Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA2. These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/diagnóstico , Deformação Eritrocítica , Hemoglobina Fetal , Hemoglobina Falciforme , Adulto , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antidrepanocíticos/uso terapêutico , Contagem de Células Sanguíneas , Transfusão de Sangue , Índices de Eritrócitos , Feminino , Hemoglobina Falciforme/genética , Humanos , Hidroxiureia/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fragilidade Osmótica , Adulto Jovem
16.
Blood ; 129(11): 1514-1526, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28151426

RESUMO

Iron availability for erythropoiesis and its dysregulation in ß-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in ß-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin's effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in ß-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that ß-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective ß-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in ß-thalassemic mice. To evaluate further, we crossed TfR1+/- mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with ß-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to ß-thalassemic mice. Our data demonstrate for the first time that TfR1+/- haploinsufficiency reverses iron overload specifically in ß-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during ß-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in ß-thalassemic mice.


Assuntos
Anemia/etiologia , Hepcidinas/metabolismo , Receptores da Transferrina/metabolismo , Talassemia beta/metabolismo , Anemia/prevenção & controle , Animais , Apoproteínas/administração & dosagem , Apoproteínas/farmacocinética , Eritropoese , Sobrecarga de Ferro/etiologia , Camundongos , Transferrina/administração & dosagem , Transferrina/farmacocinética
17.
Blood ; 129(4): 397-398, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126953
18.
Pediatrics ; 139(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999114

RESUMO

Harlequin ichthyosis (HI) is the most severe phenotype of the autosomal recessive congenital ichthyoses. HI is caused by mutations in the lipid transporter adenosine triphosphate binding cassette A 12 (ABCA12). Neonates are born with a distinct clinical appearance, encased in a dense, platelike keratotic scale separated by deep erythematous fissures. Facial features are distorted by severe ectropion, eclabium, flattened nose, and rudimentary ears. Skin barrier function is markedly impaired, which can lead to hypernatremic dehydration, impaired thermoregulation, increased metabolic demands, and increased risk of respiratory dysfunction and infection. Historically, infants with HI did not survive beyond the neonatal period; however, recent advances in neonatal intensive care and coordinated multidisciplinary management have greatly improved survival. In this review, the authors combine the growing HI literature with their collective experiences to provide a comprehensive review of the management of neonates with HI.


Assuntos
Ictiose Lamelar/terapia , Terapia Intensiva Neonatal/métodos , Transportadores de Cassetes de Ligação de ATP/genética , Terapia Combinada , Análise Mutacional de DNA , Seguimentos , Humanos , Ictiose Lamelar/diagnóstico , Ictiose Lamelar/genética , Ictiose Lamelar/mortalidade , Lactente , Recém-Nascido , Comunicação Interdisciplinar , Colaboração Intersetorial , Fenótipo , Diagnóstico Pré-Natal , Prognóstico , Taxa de Sobrevida , Centros de Atenção Terciária
19.
Blood ; 128(2): 265-76, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27154187

RESUMO

In ß-thalassemia and polycythemia vera (PV), disordered erythropoiesis triggers severe pathophysiological manifestations. ß-Thalassemia is characterized by ineffective erythropoiesis, reduced production of erythrocytes, anemia, and iron overload and PV by erythrocytosis and thrombosis. Minihepcidins are hepcidin agonists that have been previously shown to prevent iron overload in murine models of hemochromatosis and induce iron-restricted erythropoiesis at higher doses. Here, we show that in young Hbb(th3/+) mice, which serve as a model of untransfused ß-thalassemia, minihepcidin ameliorates ineffective erythropoiesis, anemia, and iron overload. In older mice with untransfused ß-thalassemia, minihepcidin improves erythropoiesis and does not alter the beneficial effect of the iron chelator deferiprone on iron overload. In PV mice that express the orthologous JAK2 mutation causing human PV, administration of minihepcidin significantly reduces splenomegaly and normalizes hematocrit levels. These studies indicate that drug-like minihepcidins have a potential as future therapeutics for untransfused ß-thalassemia and PV.


Assuntos
Eritropoese , Hepcidinas/farmacologia , Peptídeos/farmacologia , Policitemia Vera/metabolismo , Talassemia beta/metabolismo , Substituição de Aminoácidos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Peptídeos/genética , Peptídeos/metabolismo , Policitemia Vera/genética , Talassemia beta/genética
20.
Haematologica ; 101(3): 297-308, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635037

RESUMO

Iron overload results in significant morbidity and mortality in ß-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in ß-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.


Assuntos
Apoproteínas/farmacologia , Proteína Morfogenética Óssea 2/genética , Hepcidinas/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Transferrina/farmacologia , Talassemia beta/genética , Animais , Anticorpos Neutralizantes/farmacologia , Proteína Morfogenética Óssea 2/agonistas , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Butadienos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/agonistas , Hepcidinas/antagonistas & inibidores , Hepcidinas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Talassemia beta/metabolismo , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...