Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transp Porous Media ; 144(2): 507-543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051176

RESUMO

Due to spatial scaling effects, there is a discrepancy in mineral dissolution rates measured at different spatial scales. Many reasons for this spatial scaling effect can be given. We investigate one such reason, i.e., how pore-scale spatial heterogeneity in porous media affects overall mineral dissolution rates. Using the bundle-of-tubes model as an analogy for porous media, we show that the Darcy-scale reaction order increases as the statistical similarity between the pore sizes and the effective-surface-area ratio of the porous sample decreases. The analytical results quantify mineral spatial heterogeneity using the Darcy-scale reaction order and give a mechanistic explanation to the usage of reaction order in Darcy-scale modeling. The relation is used as a constitutive relation of reactive transport at the Darcy scale. We test the constitutive relation by simulating flow-through experiments. The proposed constitutive relation is able to model the solute breakthrough curve of the simulations. Our results imply that we can infer mineral spatial heterogeneity of a porous media using measured solute concentration over time in a flow-through dissolution experiment.

2.
Int J Numer Method Biomed Eng ; 36(2): e3298, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883316

RESUMO

We propose a new mathematical model to learn capillary leakage coefficients from dynamic susceptibility contrast MRI data. To this end, we derive an embedded mixed-dimension flow and transport model for brain tissue perfusion on a subvoxel scale. This model is used to obtain the contrast agent concentration distribution in a single MRI voxel during a perfusion MRI sequence. We further present a magnetic resonance signal model for the considered sequence including a model for local susceptibility effects. This allows modeling MR signal-time curves that can be compared with clinical MRI data. The proposed model can be used as a forward model in the inverse modeling problem of inferring model parameters such as the diffusive capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach in the integrity of the blood-brain barrier. Applying the model to perfusion MR data of a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall conductivity is a good indicator for characterizing activity of lesions, even if other patient-specific model parameters are not well-known.


Assuntos
Esclerose Múltipla/diagnóstico por imagem , Barreira Hematotesticular/diagnóstico por imagem , Encéfalo , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos
3.
F1000Res ; 9: 295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552475

RESUMO

Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.


Assuntos
Conhecimento , Pesquisadores , Software , Previsões , Alemanha , Humanos
4.
PLoS One ; 7(3): e31966, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438873

RESUMO

We propose a computational simulation framework for describing cancer-therapeutic transport in the lung. A discrete vascular graph model (VGM) is coupled to a double-continuum model (DCM) to determine the amount of administered therapeutic agent that will reach the cancer cells. An alveolar cell carcinoma is considered. The processes in the bigger blood vessels (arteries, arterioles, venules and veins) are described by the VGM. The processes in the alveolar capillaries and the surrounding tissue are represented by a continuum approach for porous media. The system of equations of the coupled discrete/continuum model contains terms that account for degradation processes of the therapeutic agent, the reduction of the number of drug molecules by the lymphatic system and the interaction of the drug with the tissue cells. The functionality of the coupled discrete/continuum model is demonstrated in example simulations using simplified pulmonary vascular networks, which are designed to show-off the capabilities of the model rather than being physiologically accurate.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Modelos Biológicos , Adenocarcinoma Bronquioloalveolar/irrigação sanguínea , Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Adenocarcinoma Bronquioloalveolar/fisiopatologia , Transporte Biológico Ativo , Simulação por Computador , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/fisiopatologia , Sistema Linfático/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/metabolismo , Circulação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA