Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 1(7): 1591-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20355966

RESUMO

We present a miniaturized high-throughput sensor array that will augment biofuel technology by facilitating in situ biochemical measurements upon micrometer-scale surfaces of leaves, stems, or petals. We used semiconductor processing to photopattern Foturan glass wafers and fabricated gold-plated microscopic electrode needles (ElectroNeedles) that pierced 125-mum-thick surfaces without deformation. The 5 x 5 or 10 x 10 arrays of ElectroNeedles can analyze 25 or 100 samples simultaneously, increasing throughput. Each microneedle in the array can also be individually addressed and selectively functionalized using diazonium electrodeposition, conferring multiplexing capability. Our microfabrication is a simple, inexpensive, and rapid alternative to the time-, cost-, and protocol-intense, deep-reactive-ion-etching Bosch process. We validated the system performance by electrochemically detecting p-cresol, a phenolic substrate for laccase, an enzyme that is implicated in lignin degradation and therefore important to biofuels. Our limits of detection (LOD) and quantization (LOQ) for p-cresol were 1.8 and 16microM, respectively, rivaling fluorescence detection (LOD and LOQ = 0.4 and 3microM, respectively). ElectroNeedles are multiplexed, high-throughput, chip-based sensor arrays designed for minimally invasive penetration of plant surfaces, enabling in situ and point-of-test analyses of biofuel-related biochemicals.


Assuntos
Biocombustíveis , Cresóis/química , Calibragem , Compostos de Diazônio/química , Relação Dose-Resposta a Droga , Eletroquímica/métodos , Fluorescência , Corantes Fluorescentes , Glucose/química , Lacase/química , Teste de Materiais , Agulhas
2.
Science ; 313(5785): 337-41, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857936

RESUMO

Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.


Assuntos
Bacillus subtilis/fisiologia , Células Imobilizadas , Escherichia coli/fisiologia , Nanoestruturas , Fosfolipídeos , Saccharomyces cerevisiae/fisiologia , Dióxido de Silício , Soluções Tampão , Membrana Celular , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/biossíntese , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas , Micelas , Microscopia Eletrônica , Proteínas Recombinantes/biossíntese , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...