Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 193(4): 789-799, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32419048

RESUMO

Predators and pathogens often regulate the population dynamics of their prey or hosts. When species interact with both their predators and their pathogens, understanding each interaction in isolation may not capture the system's dynamics. For instance, predators can influence pathogen transmission via consumptive effects, such as feeding on infected prey, or non-consumptive effects, such as changing the prey's susceptibility to infection. A prey species' infection status can, in turn, influence predator's choice of prey and have negative fitness consequences for the predator. To test how intraguild predation (IGP), when predator and pathogen share the same prey/host, affects pathogen transmission, predator preference, and predator fitness, we conducted a series of experiments using a crop pest (Pseudoplusia includens), a generalist predator (Podisus maculiventris), and a generalist pathogen (Autographa californica multicapsid nuclear polyhedrovirus, AcMNPV). Using a field experiment, we quantified the effects of consumptive and non-consumptive predators on pathogen transmission. We found that a number of models provided similar fits to the data. These models included null models showing no effects of predation and models that included a predation effect. We also found that predators consumed infected prey more often when choosing between live infected or live healthy prey. Infected prey also reduced predator fitness. Developmental times of predators fed infected prey increased by 20% and longevity decreased by 45%, compared with those that consumed an equivalent number of non-infected prey. While this research shows an effect of the pathogen on intraguild predator fitness, we found no support that predators affected pathogen transmission.


Assuntos
Herbivoria , Heterópteros , Animais , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório
2.
Front Plant Sci ; 11: 587528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519846

RESUMO

Plants exhibit a wide array of floral forms and pollinators can act as agent of selection on floral traits. Two trends have emerged from recent reviews of pollinator-mediated selection in plants. First, pollinator-mediated selection on plant-level attractants such as floral display size is stronger than on flower-level attractant such as flower color. Second, when comparing plant species, distinct pollinators can exert different selection patterns on floral traits. In addition, many plant species are visited by a diverse array of pollinators but very few studies have examined selection by distinct pollinators. In the current study, we examined phenotypic selection on flower color and floral display size by three distinct bee species, the European honey bee, Apis mellifera, the common eastern bumble bee, Bombus impatiens, and the alfalfa leafcutting bee, Megachile rotundata, foraging on Medicago sativa. To estimate phenotypic selection by each bee species and for all bees combined simultaneously and on the same group of plants, we introduce a new method that combines pollinator visitation data to seed set and floral trait measurements data typical of phenotypic selection study. When comparing floral traits, all bee species selected on the number of racemes per stem and the number of stems per plant, two components of floral display size. However, only leafcutting bees selected on hue or flower color and only bumble bees selected on chroma or darkness of flowers. Selection on chroma occurred via correlational selection between chroma and number of open flowers per raceme and we examine how correlational selection may facilitate the evolution of flower color in plant populations. When comparing bee species, the three bee species exerted similar selection pattern on some floral traits but different patterns on other floral traits and differences in selection patterns were observed between flower-level and plant-level attractants. The trends detected were consistent with previous studies and we advocate the approach introduced here for future studies examining the impact of distinct pollinators on floral trait evolution.

3.
Evolution ; 73(4): 636-647, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30734920

RESUMO

The virulence-transmission trade-off hypothesis proposed more than 30 years ago is the cornerstone in the study of host-parasite co-evolution. This hypothesis rests on the premise that virulence is an unavoidable and increasing cost because the parasite uses host resources to replicate. This cost associated with replication ultimately results in a deceleration in transmission rate because increasing within-host replication increases host mortality. Empirical tests of predictions of the hypothesis have found mixed support, which cast doubt about its overall generalizability. To quantitatively address this issue, we conducted a meta-analysis of 29 empirical studies, after reviewing over 6000 published papers, addressing the four core relationships between (1) virulence and recovery rate, (2) within-host replication rate and virulence, (3) within-host replication and transmission rate, and (4) virulence and transmission rate. We found strong support for an increasing relationship between replication and virulence, and replication and transmission. Yet, it is still uncertain if these relationships generally decelerate due to high within-study variability. There was insufficient data to quantitatively test the other two core relationships predicted by the theory. Overall, the results suggest that the current empirical evidence provides partial support for the trade-off hypothesis, but more work remains to be done.


Assuntos
Bactérias/patogenicidade , Transmissão de Doença Infecciosa , Parasitos/patogenicidade , Virulência , Vírus/patogenicidade , Animais , Evolução Biológica , Interações Hospedeiro-Patógeno
4.
Ecology ; 99(6): 1430-1440, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29771449

RESUMO

Plant-soil feedbacks (PSFs) influence plant competition via direct interactions with pathogens and mutualists or indirectly via apparent competition/mutualisms (i.e., spillover to co-occurring plants) and soil legacy effects. It is currently unknown how intraspecific variation in PSFs interacts with the environment (e.g., nutrient availability) to influence competition between native and invasive plants. We conducted a fully crossed multi-factor greenhouse experiment to determine the effects of Phragmites australis rhizosphere soil biota, interspecific competition, and nutrient availability on biomass of replicate populations from one native and two invasive lineages of common reed (P. australis) and a single lineage of native smooth cordgrass (Spartina alterniflora). Harmful soil biota consistently dominated PSFs involving all three P. australis lineages, reducing biomass by 10%. Indirect PSFs (i.e., soil biota spillover) from the two invasive P. australis lineages reduced S. alterniflora biomass by 7%, whereas PSFs from the native P. australis lineage increased S. alterniflora biomass by 6%. Interestingly, interspecific competition and PSFs interacted to weaken their respective impacts on S. alterniflora, whereas they exerted synergistic negative effects on P. australis. Phragmites australis soil biota decreased S. alterniflora biomass when grown alone (i.e., a soil legacy), but increased S. alterniflora biomass when grown with P. australis, suggesting that P. australis recruits harmful generalist soil biota or facilitates S. alterniflora via spillover (i.e., apparent mutualism). Soil biota also reduced interspecific competition impacts on S. alterniflora, although it remained competitively inferior to P. australis across all treatments. Competitive interactions and responses to nutrients did not differ among P. australis lineages, indicating that interspecific competition and nutrient deposition may not be key drivers of P. australis invasion in North America. Although soil biota, interspecific competition, and nutrient availability appear to have no direct impact on the success of invasive P. australis lineages in North America, intraspecific lineage variation in indirect spillover and soil legacies from P. australis occur and may have important implications for co-occurring native species and restoration of invaded habitats. Our study integrates multiple factors linked to plant invasions, highlighting that indirect interactions are likely commonplace in influencing plant community dynamics and invasion success and impacts.


Assuntos
Solo , Áreas Alagadas , América do Norte , Plantas , Poaceae
5.
Am Nat ; 190(3): 299-312, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28829639

RESUMO

Cannibalism occurs in a majority of both carnivorous and noncarnivorous animal taxa from invertebrates to mammals. Similarly, infectious parasites are ubiquitous in nature. Thus, interactions between cannibalism and disease occur regularly. While some adaptive benefits of cannibalism are clear, the prevailing view is that the risk of parasite transmission due to cannibalism would increase disease spread and, thus, limit the evolutionary extent of cannibalism throughout the animal kingdom. In contrast, surprisingly little attention has been paid to the other half of the interaction between cannibalism and disease, that is, how cannibalism affects parasites. Here we examine the interaction between cannibalism and parasites and show how advances across independent lines of research suggest that cannibalism can also reduce the prevalence of parasites and, thus, infection risk for cannibals. Cannibalism does this by both directly killing parasites in infected victims and by reducing the number of susceptible hosts, often enhanced by the stage-structured nature of cannibalism and infection. While the well-established view that disease should limit cannibalism has held sway, we present theory and examples from a synthesis of the literature showing how cannibalism may also limit disease and highlight key areas where conceptual and empirical work is needed to resolve this debate.


Assuntos
Canibalismo , Mamíferos/parasitologia , Doenças dos Animais , Animais , Evolução Biológica , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA