Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 69(4): 1131-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22576352

RESUMO

Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/µm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/µm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues.


Assuntos
Algoritmos , Hipocampo/citologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Processamento de Sinais Assistido por Computador , Animais , Ratos
2.
J Biomed Mater Res B Appl Biomater ; 97(1): 84-95, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21290586

RESUMO

Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles after placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3-0.6%) and acute rat brain tissue slices were tested using this technique over a 30-min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, µ(∞) . Values of µ(∞) for the low-concentration hydrogels ranged from 0.07 to 1.8 kPa, and µ(∞) for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio = 0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading.


Assuntos
Encéfalo , Microdissecção , Neurônios , Tomografia de Coerência Óptica , Animais , Morte Celular , Sobrevivência Celular , Feminino , Hidrogéis/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...