Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(20): 4405-4414.e4, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37769661

RESUMO

Next to iron (Fe), recent phytoplankton-enrichment experiments identified manganese (Mn) to (co-)limit Southern Ocean phytoplankton biomass and species composition. Since taxonomic diversity affects aggregation time and sinking rate, the efficiency of the biological carbon pump is directly affected by community structure. However, the impact of FeMn co-limitation on Antarctic primary production, community composition, and the subsequent export of carbon to depth requires more investigation. In situ samplings of 6 stations in the understudied southern Weddell Sea revealed that surface Fe and Mn concentrations, primary production, and carbon export rates were all low, suggesting a FeMn co-limited phytoplankton community. An Fe and Mn addition experiment examined how changes in the species composition drive the aggregation capability of a natural phytoplankton community. Primary production rates were highest when Fe and Mn were added together, due to an increased abundance of the colonial prymnesiophyte Phaeocystis antarctica. Although the community remained diatom dominated, the increase in Phaeocystis abundance led to highly carbon-enriched aggregates and a 4-fold increase in the carbon export potential compared to the control, whereas it only doubled in the Fe treatment. Based on the outcome of the FeMn-enrichment experiment, this region may suffer from FeMn co-limitation. As the Weddell Sea represents one of the most productive Antarctic marginal ice zones, our findings highlight that in response to greater Fe and Mn supply, changes in plankton community composition and primary production can have a disproportionally larger effect on the carbon export potential.


Assuntos
Diatomáceas , Haptófitas , Ferro , Manganês , Carbono , Fitoplâncton/fisiologia , Diatomáceas/fisiologia , Regiões Antárticas , Oceanos e Mares
2.
Commun Biol ; 6(1): 206, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810576

RESUMO

Phytoplankton forms the base of aquatic food webs and element cycling in diverse aquatic systems. The fate of phytoplankton-derived organic matter, however, often remains unresolved as it is controlled by complex, interlinked remineralization and sedimentation processes. We here investigate a rarely considered control mechanism on sinking organic matter fluxes: fungal parasites infecting phytoplankton. We demonstrate that bacterial colonization is promoted 3.5-fold on fungal-infected phytoplankton cells in comparison to non-infected cells in a cultured model pathosystem (diatom Synedra, fungal microparasite Zygophlyctis, and co-growing bacteria), and even ≥17-fold in field-sampled populations (Planktothrix, Synedra, and Fragilaria). Additional data obtained using the Synedra-Zygophlyctis model system reveals that fungal infections reduce the formation of aggregates. Moreover, carbon respiration is 2-fold higher and settling velocities are 11-48% lower for similar-sized fungal-infected vs. non-infected aggregates. Our data imply that parasites can effectively control the fate of phytoplankton-derived organic matter on a single-cell to single-aggregate scale, potentially enhancing remineralization and reducing sedimentation in freshwater and coastal systems.


Assuntos
Diatomáceas , Fitoplâncton , Cadeia Alimentar , Bactérias , Água Doce/microbiologia
3.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35030328

RESUMO

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Assuntos
Focas Verdadeiras , Animais , Regiões Antárticas , Peixes , Cadeia Alimentar , Água
4.
Nat Commun ; 12(1): 7168, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887407

RESUMO

Krill and salps are important for carbon flux in the Southern Ocean, but the extent of their contribution and the consequences of shifts in dominance from krill to salps remain unclear. We present a direct comparison of the contribution of krill and salp faecal pellets (FP) to vertical carbon flux at the Antarctic Peninsula using a combination of sediment traps, FP production, carbon content, microbial degradation, and krill and salp abundances. Salps produce 4-fold more FP carbon than krill, but the FP from both species contribute equally to the carbon flux at 300 m, accounting for 75% of total carbon. Krill FP are exported to 72% to 300 m, while 80% of salp FP are retained in the mixed layer due to fragmentation. Thus, declining krill abundances could lead to decreased carbon flux, indicating that the Antarctic Peninsula could become a less efficient carbon sink for anthropogenic CO2 in future.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Euphausiacea/metabolismo , Água do Mar/análise , Animais , Regiões Antárticas , Fezes/química
5.
Commun Biol ; 4(1): 1061, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508174

RESUMO

Over the past decades, two key grazers in the Southern Ocean (SO), krill and salps, have experienced drastic changes in their distribution and abundance, leading to increasing overlap of their habitats. Both species occupy different ecological niches and long-term shifts in their distributions are expected to have cascading effects on the SO ecosystem. However, studies directly comparing krill and salps are lacking. Here, we provide a direct comparison of the diet and fecal pellet composition of krill and salps using 18S metabarcoding and fatty acid markers. Neither species' diet reflected the composition of the plankton community, suggesting that in contrast to the accepted paradigm, not only krill but also salps are selective feeders. Moreover, we found that krill and salps had broadly similar diets, potentially enhancing the competition between both species. This could be augmented by salps' ability to rapidly reproduce in favorable conditions, posing further risks to krill populations.


Assuntos
Euphausiacea/fisiologia , Urocordados/fisiologia , Animais , Dieta , Ácidos Graxos/análise , RNA Ribossômico 18S/análise
6.
Philos Trans R Soc Lond B Biol Sci ; 368(1625): 20120406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878342

RESUMO

We review the literature and find 16 studies from across Africa's savannas and woodlands where woody encroachment dominates. These small-scale studies are supplemented by an analysis of long-term continent-wide satellite data, specifically the Normalized Difference Vegetation Index (NDVI) time series from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset. Using dry-season data to separate the tree and grass signals, we find 4.0% of non-rainforest woody vegetation in sub-Saharan Africa (excluding West Africa) significantly increased in NDVI from 1982 to 2006, whereas 3.52% decreased. The increases in NDVI were found predominantly to the north of the Congo Basin, with decreases concentrated in the Miombo woodland belt. We hypothesize that areas of increasing dry-season NDVI are undergoing woody encroachment, but the coarse resolution of the study and uncertain relationship between NDVI and woody cover mean that the results should be interpreted with caution; certainly, these results do not contradict studies finding widespread deforestation throughout the continent. However, woody encroachment could be widespread, and warrants further investigation as it has important consequences for the global carbon cycle and land-climate interactions.


Assuntos
Conservação dos Recursos Naturais/história , Árvores , Clima Tropical , África Subsaariana , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Monitorização de Parâmetros Ecológicos , Ecossistema , História do Século XX , História do Século XXI , Chuva , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA