Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 135001, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206410

RESUMO

Short-pulse, laser-solid interactions provide a unique platform for studying complex high-energy-density matter. We present the first demonstration of solid-density, micron-scale keV plasmas uniformly heated by a high-contrast, 400 nm wavelength laser at intensities up to 2×10^{21} W/cm^{2}. High-resolution spectral analysis of x-ray emission reveals uniform heating up to 3.0 keV over 1 µm depths. Particle-in-cell simulations indicate the production of a uniformly heated keV plasma to depths of 2 µm. The significant bulk heating and presence of highly ionized ions deep within the target are attributed to the few MeV hot electrons that become trapped and undergo refluxing within the target sheath fields. These conditions enabled the differentiation of atomic physics models of ionization potential depression in high-energy-density environments.

2.
Rev Sci Instrum ; 92(9): 093508, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598532

RESUMO

In this paper, we report on a crystal based x-ray imaging system fielded at the OMEGA EP laser facility. This new system has a pointing accuracy of +/100 µm, a temporal resolution down to 100 ps (depending on backlighter characteristics), variable magnification, and a spatial resolution of 21.9 µm at the object plane at a magnification of 15×. The system is designed to use a crystal along the crystal plane that satisfies the Bragg condition for the x ray of interest. The thin crystal is then bent into a spherical geometry and attached to a glass backing substrate to hold it in the diagnostic, and the x rays are imaged onto a charge coupled device. We report on data acquired with the new Los Alamos National Laboratory supplied spherical quartz crystal to image the Mn He-α 6.15 keV line emission.

3.
Phys Rev E ; 102(4-1): 043212, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212701

RESUMO

In this work, we present results from experiments capable of producing and measuring the propagation of multiple successive, copropagating shocks across an unstable planar interface, where the shocks are independently driven and separately controllable, enabling the study of this important phenomenon. Copropagating shocks play a significant role in a wide range of systems involving stratified media subject to a shock, and exhibit different physical characteristics compared to counterpropagating shocks. Existing techniques, however, preclude copropagating shocks, so experiments to date have been limited to the study of counterpropagating shocks. We address this previous limitation and open a physical parameter space for study using a new hohlraum platform on the National Ignition Facility. Initial experimental results are presented together with comparisons from numerical simulations.

4.
Phys Rev Lett ; 124(18): 185003, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441981

RESUMO

Rayleigh-Taylor instability growth is shown to be hydrodynamically scale invariant in convergent cylindrical implosions for targets that varied in radial dimension and implosion timescale by a factor of 3. The targets were driven directly by laser irradiation providing a short impulse, and instability growth at an embedded aluminum interface occurs as it converges radially inward by a factor of 2.25 and decelerates on a central foam core. Late-time growth factors of 14 are observed for a single-mode m=20 azimuthal perturbation at both scales, despite the differences in laser drive conditions between the experimental facilities, consistent with predictions from radiation-hydrodynamics simulations. This platform enables detailed investigations into the limits of hydrodynamic scaling in high-energy-density systems.

5.
Rev Sci Instrum ; 89(10): 10F101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399753

RESUMO

A point-projection soft X-ray Opacity Spectrometer (OpSpec) has been implemented to measure X-ray spectra from ∼1 to 2 keV on the National Ignition Facility (NIF). Measurement of such soft X-rays with open-aperture point-projection detectors is challenging because only very thin filters may be used to shield the detector from the hostile environment. OpSpec diffracts X-rays from 540 to 2100 eV off a potassium (or rubidium) acid phthalate (KAP or RbAP) crystal onto either image plates or, most recently, X-ray films. A "sacrificial front filter" strategy is used to prevent crystal damage, while 2 or 3 rear filters protect the data. Since May 2017, OpSpec has been recording X-ray transmission data for iron-magnesium plasmas on the NIF, at "Anchor 1" plasma conditions (temperature ∼150 eV, density ∼7 × 1021 e -/cm3). Upgrades improved OpSpec's performance on 6 NIF shots in August and December 2017, with reduced backgrounds and 100% data return using filter stacks as thin as 2.9 µm (total). Photometric noise is beginning to meet requirements, and further work will reduce systematic errors.

6.
Nat Commun ; 9(1): 1564, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674695

RESUMO

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh-Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

7.
Phys Plasmas ; 24(6): 063301, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29104422

RESUMO

Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ∼20 µm thickness have been performed. X-ray yields of up to ∼1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ∼100 µm FWHM, with ∼350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.

8.
Phys Rev E ; 95(2-1): 023202, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297959

RESUMO

We report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in the preheat behavior. This result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.

9.
Phys Rev Lett ; 117(22): 225001, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925731

RESUMO

Using a large volume high-energy-density fluid shear experiment (8.5 cm^{3}) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

10.
Phys Rev E ; 94(2-1): 023101, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627387

RESUMO

Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg/cm^{3}) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (ΔU> 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 10^{3}-10^{4} times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26764843

RESUMO

The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5µm. Experiments on the Trident laser (I=5×10(19)W/cm(2)) diagnosed via Kα emission from Cu wires attached to Au cones are quantitively reproduced using 2D particle-in-cell simulations that capture the full temporal and spatial scale of the nonlinear laser interaction and electron transport. The simulations indicate that 32%±8%(6.5%±2%) of the laser energy is coupled into electrons of all energies (1-3 MeV) reaching the inner cone tip and that, with an optimized scale-length, this could increase to 35% (9%).

12.
Rev Sci Instrum ; 85(11): 11D601, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430177

RESUMO

We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

13.
Rev Sci Instrum ; 85(9): 093501, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273720

RESUMO

A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 × 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing ~4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles.

14.
Rev Sci Instrum ; 85(4): 043305, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784600

RESUMO

An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

15.
Rev Sci Instrum ; 82(11): 113504, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128973

RESUMO

A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed, constructed, and used at the OMEGA-EP facility. Laser-accelerated multi-MeV ions from hemispherical C targets are transmitted through a W pinhole into a multi-kG magnetic field and subsequently through a parallel electric field of up to 25 kV/cm. The ion drift region has a user-selected length of 10, 50, or 80 cm. With the highest fields, 400-MeV C(6+) and C(5+) may be resolved. TPIE is ten-inch manipulator (TIM)-mounted at OMEGA-EP and can be used opposite either of the EP ps beams. The instrument runs on pressure-interlocked 15-Vdc power available in EP TIM carts. Flux control derives from the insertion depth into the target chamber and the user-selected pinhole dimensions. The detector consists of CR39 backed by an image plate. A fully relativistic simulation code for calculating ion trajectories was employed for design optimization. Excellent agreement of code predictions with the actual ion positions on the detectors is observed. Through pit counting of carbon-ion tracks in CR39, it is shown that conversion efficiency of laser light to energetic carbon ions exceeds ~5% for these targets.

16.
Phys Rev Lett ; 104(8): 085001, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366940

RESUMO

Thin, mass-limited targets composed of V/Cu/Al layers with diameters ranging from 50 to 300 microm have been isochorically heated by a 300 fs laser pulse delivering up to 10 J at 2x10{19} W/cm{2} irradiance. Detailed spectral analysis of the Cu x-ray emission indicates that the highest temperatures, of the order of 100 eV, have been reached when irradiating the smallest targets with a high-contrast, frequency-doubled pulse despite a reduced laser energy. Collisional particle-in-cell simulations confirm the detrimental influence of the preformed plasma on the bulk target heating.

17.
Phys Rev Lett ; 103(4): 045002, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659362

RESUMO

We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of approximately 7 x 10;{19} W/cm;{2}. An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model.

18.
Rev Sci Instrum ; 79(10): 10E534, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044515

RESUMO

The recent Los Alamos National Laboratory Trident laser enhanced from 30 to 200 TW in power allows more than 100 J to be delivered on target in 500 fs with a spot size smaller than 12 microm at full width at half maximum. 15 microm flat-foil targets have been observed to produce proton beams in excess of 50 MeV at an intensity of only approximately 4x10(19) W/cm(2) with efficiencies approaching 5%. The Trident laser beam characteristics are presented along with the data compared to published scaling laws for proton acceleration.


Assuntos
Íons , Lasers , Prótons , Estados Unidos
19.
Rev Sci Instrum ; 79(10): 10E536, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044517

RESUMO

Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.


Assuntos
Lasers , Prótons , Argônio/química , Carbono/química , Desenho de Equipamento , Íons , Luz , Nitrogênio/química , Oxigênio/química , Espalhamento de Radiação , Temperatura
20.
Rev Sci Instrum ; 79(10): 10F305, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044618

RESUMO

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...