Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kardiol Pol ; 80(6): 651-656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445740

RESUMO

BACKGROUND: Distal transradial access (dTRA) has been proposed as an alternative to traditional transradial access (TRA) in cardiac catheterization. AIMS: The study aimed to compare these two transradial approaches: TRA and dTRA in terms of clinical and biochemical aspects. METHODS: Two hundred patients who qualified for the elective coronary procedure were included. The patients were assigned to one of the groups depending on their vascular access. The groups were compared in terms of perceived pain using the Visual Analogue Scale (VAS), time of gaining access, need for conversion, and local complications. Additionally, in forty patients circulating endothelial injury markers: endothelin 1 (ET-1), interleukin 8 (IL-8), and soluble vascular cell adhesion molecule-1 (sVCAM-1) were assessed. RESULTS: Successful cannulation was obtained in 84 (100%) in the TRA group and in 98 (84%) subjects in the dTRA (P <0.001). dTRA was associated with higher level of pain perceived at the time of gaining vascular approach than TRA; median VAS score (interquartile range [IQR]): 4 (2-5) vs. 2 (2-4) (P = 0.04). The mean time (standard deviation [SD]) needed to cannulate the artery in dTRA was longer than in TRA: 81 (8) seconds vs. 50 (4) seconds (P = 0.04). ET-1 concentration was (SD) 2.08 (0.19) pg/ml [dTRA] vs. 2.00 (0.29) [TRA] pg/ml (P = 0.83); sVCAM-1: 12.71 (3.97) ng/ml vs. 12.86 (4.29) ng/ml (P = 0.98); IL-8: 8.81 (0.42) ng/ml vs. 9.15 (0.52) ng/ml (P = 0.62). Th number of complications after procedures did not differ between these two approaches. CONCLUSIONS: Cannulation of dTRA is associated with a lower success rate and higher pain perceived. dTRA is not inferior to TRA when safety issues and vascular injury are considered.


Assuntos
Intervenção Coronária Percutânea , Artéria Radial , Cateterismo Cardíaco/métodos , Angiografia Coronária/métodos , Humanos , Interleucina-8 , Dor , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Resultado do Tratamento
2.
Genes (Basel) ; 11(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708255

RESUMO

Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Luteolina/química , Fármacos Neuroprotetores/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Supressão Genética
3.
Adv Exp Med Biol ; 1116: 19-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30267308

RESUMO

Remote ischemic preconditioning (RIPC) exerts protection in remote organs. The purpose of this study was to investigate the potential of RIPC to prevent contrast induced nephropathy. One hundred and twenty four patients were randomized to elective percutaneous coronary intervention with or without RIPC. RIPC was performed using three cycles of 5-min inflation to 200 mmHg of a standard upper arm blood pressure cuff. The time between the last inflation cycle and the coronary intervention was less than 2 h. The primary endpoint was the incidence of contrast-induced nephropathy based on the standard criteria of the serum creatinine (SC) and cystatin C (CC) levels. The rates of major cardiac and cerebral adverse events (MACCE) during 1 year follow-up were evaluated. We found that contrast-induced nephropathy assessed by SC occurred in 4.9% (3/61) patients with RIPC and in 12.1% (7/58) patients without it (p = 0.20). Nephropathy assessed by CC occurred in 1.7% (1/58) patients with RIPC and 3.5% (2/57) patients without it (p = 0.62). There was no coincidence between the diagnosis of contrast-induced nephropathy based on SC and CC (McNemar test 0.012, κ = 0.28); SC was a more sensitive marker of nephropathy than CC (ten and three cases, respectively). The MACCE rate during the year of follow-up tended to be lower with the ischemic preconditioning than without it, four vs. six cases, respectively. We conclude that RIPC prior to percutaneous coronary intervention has no major influence on the development of contrast-induced nephropathy and does not improve the one-year outcome.


Assuntos
Meios de Contraste/efeitos adversos , Precondicionamento Isquêmico , Nefropatias/prevenção & controle , Intervenção Coronária Percutânea , Creatinina/sangue , Humanos , Nefropatias/induzido quimicamente
4.
Traffic ; 18(11): 711-719, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28846184

RESUMO

Human Vps13 proteins are associated with several diseases, including the neurodegenerative disorder Chorea-acanthocytosis (ChAc), yet the biology of these proteins is still poorly understood. Studies in Saccharomyces cerevisiae, Dictyostelium discoideum, Tetrahymena thermophila and Drosophila melanogaster point to the involvement of Vps13 in cytoskeleton organization, vesicular trafficking, autophagy, phagocytosis, endocytosis, proteostasis, sporulation and mitochondrial functioning. Recent findings show that yeast Vps13 binds to phosphatidylinositol lipids via 4 different regions and functions at membrane contact sites, enlarging the list of Vps13 functions. This review describes the great potential of simple eukaryotes to decipher disease mechanisms in higher organisms and highlights novel insights into the pathological role of Vps13 towards ChAc.


Assuntos
Neuroacantocitose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Dictyostelium/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Mutação , Neuroacantocitose/genética , Neuroacantocitose/patologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Proteínas de Transporte Vesicular/genética
5.
Hum Mol Genet ; 26(8): 1497-1510, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334785

RESUMO

The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc.


Assuntos
Substituição de Aminoácidos/genética , Neuroacantocitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Transporte Biológico/genética , Endossomos/genética , Humanos , Mutação , Neuroacantocitose/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética
6.
Int J Biochem Cell Biol ; 79: 494-504, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498190

RESUMO

Human Nedd4 ubiquitin ligase, or its variants, inhibit yeast cell growth by disturbing the actin cytoskeleton organization and dynamics, and lead to an increase in levels of ubiquitinated proteins. In a screen for multicopy suppressors which rescue growth of yeast cells producing Nedd4 ligase with an inactive WW4 domain (Nedd4w4), we identified a fragment of ATG2 gene encoding part of the Atg2 core autophagy protein. Expression of the Atg2-C1 fragment (aa 1074-1447) improved growth, actin cytoskeleton organization, but did not significantly change the levels of ubiquitinated proteins in these cells. The GFP-Atg2-C1 protein in Nedd4w4-producing cells primarily localized to a single defined structure adjacent to the vacuole, surrounded by an actin filament ring, containing Hsp42 and Hsp104 chaperones. This localization was not affected in several atg deletion mutants, suggesting that it might be distinct from the phagophore assembly site (PAS). However, deletion of ATG18 encoding a phosphatidylinositol-3-phosphate (PI3P)-binding protein affected the morphology of the GFP-Atg2-C1 structure while deletion of ATG14 encoding a subunit of PI3 kinase suppressed toxicity of Nedd4w4 independently of GFP-Atg2-C1. Further analysis of the Atg2-C1 revealed that it contains an APT1 domain of previously uncharacterized function. Most importantly, we showed that this domain is able to bind phosphatidylinositol phosphates, especially PI3P, which is abundant in the PAS and endosomes. Together our results suggest that human Nedd4 ubiquitinates proteins in yeast and causes proteotoxic stress and, with some Atg proteins, leads to formation of a perivacuolar structure, which may be involved in sequestration, aggregation or degradation of proteins.


Assuntos
Estresse Oxidativo , Fosfatos de Fosfatidilinositol/metabolismo , Proteólise , Citoplasma/metabolismo , Humanos , Domínios Proteicos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
7.
DNA Repair (Amst) ; 29: 23-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758782

RESUMO

DNA polymerase epsilon interacts with the CMG (Cdc45-MCM-GINS) complex by Dpb2p, the non-catalytic subunit of DNA polymerase epsilon. It is postulated that CMG is responsible for targeting of Pol ɛ to the leading strand. We isolated a mutator dpb2-100 allele which encodes the mutant form of Dpb2p. We showed previously that Dpb2-100p has impaired interactions with Pol2p, the catalytic subunit of Pol ɛ. Here, we present that Dpb2-100p has strongly impaired interaction with the Psf1 and Psf3 subunits of the GINS complex. Our in vitro results suggest that while dpb2-100 does not alter Pol ɛ's biochemical properties including catalytic efficiency, processivity or proofreading activity - it moderately decreases the fidelity of DNA synthesis. As the in vitro results did not explain the strong in vivo mutator effect of the dpb2-100 allele we analyzed the mutation spectrum in vivo. The analysis of the mutation rates in the dpb2-100 mutant indicated an increased participation of the error-prone DNA polymerase zeta in replication. However, even in the absence of Pol ζ activity the presence of the dpb2-100 allele was mutagenic, indicating that a significant part of mutagenesis is Pol ζ-independent. A strong synergistic mutator effect observed for transversions in the triple mutant dpb2-100 pol2-4 rev3Δ as compared to pol2-4 rev3Δ and dpb2-100 rev3Δ suggests that in the presence of the dpb2-100 allele the number of replication errors is enhanced. We hypothesize that in the dpb2-100 strain, where the interaction between Pol ɛ and GINS is weakened, the access of Pol δ to the leading strand may be increased. The increased participation of Pol δ on the leading strand in the dpb2-100 mutant may explain the synergistic mutator effect observed in the dpb2-100 pol3-5DV double mutant.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase II/genética , Replicação do DNA/genética , Mutação , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Polimerase II/metabolismo , DNA Fúngico/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
PLoS One ; 9(3): e92305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24676085

RESUMO

DNA methylation is an epigenetic phenomenon known to play an important role in the development and progression of human cancer. Enzyme responsible for this process is DNA methyltransferase 1 (DNMT1) that maintains an altered methylation pattern by copying it from parent to daughter DNA strands after replication. Aberrant methylation of the promoter regions of genes critical for normal cellular functions is potentially reversible. Therefore, inactivation of DNMT1 seems to be a valuable target for the development of cancer therapies. Currently, the most popular DNMT inhibitors (DNMTi) are cytidine analogues like 5-azacytidine, 5-aza-2'-deoxycytidine (decitabine) and pyrimidin-2-one ribonucleoside (zebularine). In colorectal cancer, epigenetic modifications play an essential role at each step of carcinogenesis. Therefore, we have addressed the hypothesis that DNA methyltransferase inhibitors may potentiate inhibitory effects of classical chemotherapeutic agents, such as oxaliplatin and 5-fluorouracil (5-FU), commonly used in colorectal cancer therapy. Here, our report shows that DNMTi can have positive interactions with standard chemotherapeutics in colorectal cancer treatment. Using pharmacological models for the drug-drug interaction analysis, we have revealed that the combination of decitabine with 5-FU or oxaliplatin shows the most attractive interaction (synergism), whereas the effect of zebularine in combinations with chemotherapeutics is moderate and may be depended on genetic/epigenetic background of a cell line or secondary drug used in combination. Our results suggest that DNMTi administered in combination with standard chemotherapeutics might improve the treatment of patients with colorectal cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , DNA-Citosina Metilases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Apoptose , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Citidina/análogos & derivados , Citidina/uso terapêutico , Dano ao DNA , Decitabina , Fluoruracila/uso terapêutico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina
9.
Leuk Lymphoma ; 53(12): 2474-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22616753

RESUMO

The mitochondrial respiratory chain (MRC) consists of protein complexes I, II, III, IV and V that support oxidative phosphorylation (OXPHOS), which depends on electron transport to generate adenosine triphosphate (ATP). Electron "leakage" from the MRC generates reactive oxygen species (ROS). Chronic myeloid leukemia in chronic phase (CML-CP) stem cells (LSCs) produce high levels of mitochondrial ROS, causing oxidative DNA damage, resulting in genomic instability, generating imatinib-resistant BCR-ABL1 kinase mutants and additional chromosomal aberrations. Using global mRNA microarray analysis combined with Ingenuity Pathway Analysis we found that LSCs display enhanced expression of genes encoding MRC complexes I, II, IV and V. However, expression of genes encoding complex III was deregulated. Treatment with imatinib did not correct the aberrant levels of MRC genes. Therefore we postulate that abnormal expression of MRC genes may facilitate electron "leakage" to promote the production of ROS and accumulation of genomic instability in LSCs in imatinib-naive and imatinib-treated patients.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide de Fase Crônica/genética , Células-Tronco Neoplásicas/metabolismo , Trifosfato de Adenosina/metabolismo , Análise de Variância , Benzamidas , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Instabilidade Genômica , Humanos , Mesilato de Imatinib , Leucemia Mieloide de Fase Crônica/metabolismo , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Biochim Biophys Acta ; 1821(3): 373-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21787882

RESUMO

ABCA1 belongs to the A class of ABC transporter, which is absent in yeast. ABCA1 elicits lipid translocation at the plasma membrane through yet elusive processes. We successfully expressed the mouse Abca1 gene in Saccharomyces cerevisiae. The cloned ABCA1 distributed at the yeast plasma membrane in stable discrete domains that we name MCA (membrane cluster containing ABCA1) and that do not overlap with the previously identified punctate structures MCC (membrane cluster containing Can1p) and MCP (membrane cluster containing Pma1p). By comparison with a nonfunctional mutant, we demonstrated that ABCA1 elicits specific phenotypes in response to compounds known to interact with membrane lipids, such as papuamide B, amphotericin B and pimaricin. The sensitivity of these novel phenotypes to the genetic modification of the membrane lipid composition was studied by the introduction of the cho1 and lcb1-100 mutations involved respectively in phosphatidylserine or sphingolipid biosynthesis in yeast cells. The results, corroborated by the analysis of equivalent mammalian mutant cell lines, demonstrate that membrane composition, in particular its phosphatidylserine content, influences the function of the transporter. We thus have reconstituted in yeast the essential functions associated to the expression of ABCA1 in mammals and characterized new physiological phenotypes prone to genetic analysis. This article is a part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Fosfatidilserinas/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Depsipeptídeos/farmacologia , Expressão Gênica , Células HeLa , Humanos , Camundongos , Natamicina/farmacologia , Fosfatidilserinas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/fisiologia
11.
Eur J Pharmacol ; 627(1-3): 26-32, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19853597

RESUMO

Histone deacetylases (HDACs) activity determines the acetylation status of histons, and has the ability to regulate gene expression through chromatin remodelling. HDACs are a promising target for pharmacological inhibition, since it has been discovered that some genes are repressed by their inappropriate recruitment. To test this we have addressed the hypothesis that histone deacetylase inhibitors SBHA and MS275 potentiate inhibitory effects of classical anti-colorectal cancer cytostatic, 5-fluorouracil (5-FU), on survival of colorectal cancer (CRC) cells in vitro. We are reporting here that HDAC inhibitors show potent synergistic interaction with 5-FU. The observed synergism between HDAC inhibitors and 5-FU is most probably related to the augmented apoptotic signal allowed for significant (both biological and statistical) reduction of the cytotoxic doses.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Ácidos Hidroxâmicos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
12.
Mutat Res ; 669(1-2): 27-35, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19463834

RESUMO

Most of the prokaryotic and eukaryotic replicative polymerases are multi-subunit complexes. There are several examples indicating that noncatalytic subunits of DNA polymerases may function as fidelity factors during replication process. In this work, we have further investigated the role of Dpb2p, a noncatalytic subunit of DNA polymerase epsilon holoenzyme from Saccharomyces cerevisiae in controlling the level of spontaneous mutagenesis. The data presented indicate that impaired interaction between catalytic Pol2p subunit and Dpb2p is responsible for the observed mutator phenotype in S. cerevisiae strains carrying different mutated alleles of the DPB2 gene. We observed a significant correlation between the decreased level of interaction between different mutated forms of Dpb2p towards a wild-type form of Pol2p and the strength of mutator phenotype that they confer. We propose that structural integrity of the Pol epsilon holoenzyme is essential for genetic stability in S. cerevisiae cells.


Assuntos
DNA Polimerase II/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sobrevivência Celular , Deleção de Genes , Immunoblotting , Mutagênese , Fenótipo , Subunidades Proteicas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
13.
Genetics ; 178(2): 633-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245343

RESUMO

Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.


Assuntos
DNA Polimerase II/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Polimerase II/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Genótipo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochem J ; 390(Pt 3): 655-64, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15926887

RESUMO

The mammalian chloride channel ClC-2 is a member of the CLC voltage-gated chloride channels family. This broadly expressed protein shows diverse cellular locations and despite numerous studies, its precise function is poorly understood. Disruption of ClC-2-encoding gene in mouse leads to retinal and testicular degeneration and mutations in CLC2 (gene encoding the ClC-2 channel) are associated with idiopathic generalized epilepsies. ClC-2 may also be responsible for Cl- transport in mouse salivary glands. The only CLC homologue of the yeast Saccharomyces cerevisiae, Gef1p, exhibits CLC activity. We expressed the mammalian ClC-2 protein in S. cerevisiae devoid of Gef1p in an attempt to identify yeast proteins influencing the functioning of ClC-2. The presence of such proteins in yeast could indicate the existence of their homologues in mammalian cells and would greatly aid their identification. Expression of ClC-2 in yeast required optimization of the sequence context of the AUG translation initiation codon. After obtaining an efficient translation, we found that rat ClC-2 cannot directly substitute for yeast Gef1p. Functional substitution for Gef1p was, however, achieved in the presence of an increased level of intact or C-terminally truncated yeast Kha1 protein. Based on the deduced amino acid sequence, the Kha1 protein can be classified as a Na+/H+ transporter since it has a large N-terminal domain similar to the family of NHEs (Na+/H+ exchangers). This suggests that the Kha1p may take part in the regulation of intracellular cation homoeostasis and pH control. We have established that Kha1p is localized in the same cellular compartment as Gef1p and yeast-expressed ClC-2: the Golgi apparatus. We propose that Kha1p may aid ClC-2-dependent suppression of the Deltagef1-associated growth defects by keeping the Golgi apparatus pH in a range suitable for ClC-2 activity. The approach employed in the present study may be of general applicability to the characterization of poorly understood proteins by their functional expression in yeast.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animais , Canais de Cloro CLC-2 , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/metabolismo , Fenótipo , Antiportadores de Potássio-Hidrogênio/genética , Transporte Proteico , Ratos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Biochem Biophys Res Commun ; 294(5): 1144-50, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12074596

RESUMO

The Gef1 protein of the yeast Saccharomyces cerevisiae (Gef1p) has amino acid homology to the voltage-gated CLC chloride channel family. It has been postulated that it provides the compensatory transport of Cl- anions to the lumen of the Golgi thereby regulating the pH of this compartment. Using GEF1 fusion with heterologous promoter we obtained a yeast strain highly overproducing Gef1p. The electrophysiological properties of the microsomal fraction obtained from this strain were measured using lipid bilayer system. Our data indicate that Gef1p is associated with the chloride channel activity. This anion-selective channel has a unitary conductance of 42 pS when measured in symmetrical 600/600 mM TEA-Cl solutions, is voltage-dependent, and closes at high negative voltages.


Assuntos
Canais de Cloreto/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Canais de Cloreto/genética , Condutividade Elétrica , Bicamadas Lipídicas , Potenciais da Membrana , Proteínas de Membrana/genética , Microssomos/química , Proteínas Recombinantes de Fusão/análise , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...