Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 455: 114678, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37739228

RESUMO

Anxiety disorders affect up to one third of the population. Caffeine, an adenosine receptor antagonist, is thought to have a dose-dependent effect on anxiety. We recently showed that a high dose of caffeine (50 mg/kg) differentially affected anxiety-like behavior in rats with high or low baseline anxiety-like behavior, replicating findings using relatively high doses in human patient samples. It is not known if low doses of caffeine have similar effects. The elevated plus maze (EPM) was used to categorize male Wistar rats (13 weeks of age) into groups of high or low anxiety-like behavior. Behavior was evaluated using the multivariate concentric square field (MCSF) test and the EPM after a low 10 mg/kg dose of caffeine. Multivariate data analysis demonstrated that caffeine decreased the differences between the high and low anxiety group, whereas the separation remained for the high and low control groups. For the caffeine treated rats, univariate statistics showed an increase in parameters regarding activity in the EPM and duration in the slope of the MCSF. Regarding risk-taking, shelter-seeking, and exploratory behavior, caffeine did not affect the groups differently. In conclusion, these results demonstrate increased activity in the caffeine-treated rats, together with a potentially anxiolytic effect and increased impulsivity that did not differ between the baseline anxiety groups. In contrast to high caffeine doses, a low dose does not generally affect rats with high anxiety at baseline differently than rats with low anxiety-like behavior. Further studies are warranted to fully elucidate the effects of caffeine in anxiety.


Assuntos
Ansiolíticos , Cafeína , Humanos , Ratos , Masculino , Animais , Cafeína/farmacologia , Ratos Wistar , Ansiedade/tratamento farmacológico , Ansiolíticos/farmacologia , Comportamento Exploratório , Comportamento Animal , Aprendizagem em Labirinto
2.
Pharmacol Biochem Behav ; 227-228: 173573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37302662

RESUMO

Anxiety disorders are common psychiatric conditions with a partially elucidated neurobiology. Caffeine, an unspecific adenosine receptor antagonist, is a common psychostimulant with anxiogenic effects in sensitive individuals. High doses of caffeine produce anxiety-like behavior in rats but it is not known if this is specific for rats with high baseline anxiety-like behavior. Thus, the aim of this study was to investigate general behavior, risk-taking, and anxiety-like behavior, as well as mRNA expression (adenosine A2A and A1, dopamine D2, and, µ, κ, δ opioid, receptors, BDNF, c-fos, IGF-1) in amygdala, caudate putamen, frontal cortex, hippocampus, hypothalamus, after an acute dose of caffeine. Untreated rats were screened using the elevated plus maze (EPM), giving each rat a score on anxiety-like behavior based on their time spent in the open arms, and categorized into a high or low anxiety-like behavior group accordingly. Three weeks after categorization, the rats were treated with 50 mg/kg caffeine and their behavior profile was studied in the multivariate concentric square field (MCSF) test, and one week later in the EPM. qPCR was performed on selected genes and corticosterone plasma levels were measured using ELISA. The results demonstrated that the high anxiety-like behavior rats treated with caffeine spent less time in risk areas of the MCSF and resituated towards the sheltered areas, a behavior accompanied by lower mRNA expression of adenosine A2A receptors in caudate putamen and increased BDNF expression in hippocampus. These results support the hypothesis that caffeine affects individuals differently depending on their baseline anxiety-like behavior, possibly involving adenosine receptors. This highlights the importance of adenosine receptors as a possible drug target for anxiety disorders, although further research is needed to fully elucidate the neurobiological mechanisms of caffeine on anxiety disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cafeína , Ratos , Animais , Cafeína/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Receptores Opioides , Adenosina/farmacologia , Ansiedade/tratamento farmacológico , Receptores Purinérgicos P1/genética , RNA Mensageiro , Assunção de Riscos
3.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36286055

RESUMO

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...