Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 751251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858979

RESUMO

Malaria caused by Plasmodium falciparum results in over 400,000 deaths annually, predominantly affecting African children. In addition, non-falciparum species including vivax and knowlesi cause significant morbidity and mortality. Vascular dysfunction is a key feature in malaria pathogenesis leading to impaired blood perfusion, vascular obstruction, and tissue hypoxia. Contributing factors include adhesion of infected RBC to endothelium, endothelial activation, and reduced nitric oxide formation. Endothelial glycocalyx (eGC) protects the vasculature by maintaining vessel integrity and regulating cellular adhesion and nitric oxide signaling pathways. Breakdown of eGC is known to occur in infectious diseases such as bacterial sepsis and dengue and is associated with adverse outcomes. Emerging studies using biochemical markers and in vivo imaging suggest that eGC breakdown occurs during Plasmodium infection and is associated with markers of malaria disease severity, endothelial activation, and vascular function. In this review, we describe characteristics of eGC breakdown in malaria and discuss how these relate to vascular dysfunction and adverse outcomes. Further understanding of this process may lead to adjunctive therapy to preserve or restore damaged eGC and reduce microvascular dysfunction and the morbidity/mortality of malaria.

2.
FASEB J ; 35(9): e21805, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403544

RESUMO

A layer of glycocalyx covers the vascular endothelium serving important protective and homeostatic functions. The objective of this study was to determine if breakdown of the endothelial glycocalyx (eGC) occurs during malaria infection in children. Measures of eGC integrity, endothelial activation, and microvascular reactivity were prospectively evaluated in 146 children: 44 with moderately severe malaria (MSM), 42 with severe malaria (SM), and 60 healthy controls (HC). Biochemical measures of eGC integrity included plasma syndecan-1 and total urinary glycosaminoglycans (GAG). Side-stream dark field imaging was used to quantitatively assess integrity of eGC. Plasma angiopoietin-2 (Ang-2) was measured as a marker of endothelial activation and also as a possible mediator of eGC breakdown. Our results show that urinary GAG, syndecan-1, and Ang-2 were elevated in patients with MSM and SM compared with HC. Syndecan-1 and GAG levels correlated significantly with each other and with plasma Ang-2. The eGC breakdown products also inversely correlated significantly with hemoglobin and platelet count. In the MSM group, imaging results provided further evidence for eGC degradation. Although not correlated with markers of eGC degradation, vascular function (assessed by non-invasive near infrared spectroscopy [NIRS]) demonstrated reduced microvascular reactivity, particularly affecting the SM group. Our findings provide further evidence for breakdown of eGC in falciparum malaria that may contribute to endothelial activation and adhesion of parasitized red blood cells, with reduced nitric oxide formation, and vascular dysfunction.


Assuntos
Células Endoteliais/metabolismo , Glicocálix/metabolismo , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Microcirculação , Tanzânia
3.
J Infect Dis ; 224(8): 1432-1441, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33617646

RESUMO

BACKGROUND: Cerebral malaria (CM) pathogenesis remains incompletely understood. Having shown low systemic levels of tetrahydrobiopterin (BH4), an enzymatic cofactor for neurotransmitter synthesis, we hypothesized that BH4 and BH4-dependent neurotransmitters would likewise be low in cerebrospinal fluid (CSF) in CM. METHODS: We prospectively enrolled Tanzanian children with CM and children with nonmalaria central nervous system conditions (NMCs). We measured CSF levels of BH4, neopterin, and BH4-dependent neurotransmitter metabolites, 3-O-methyldopa, homovanillic acid, and 5-hydroxyindoleacetate, and we derived age-adjusted z-scores using published reference ranges. RESULTS: Cerebrospinal fluid BH4 was elevated in CM (n = 49) compared with NMC (n = 51) (z-score 0.75 vs -0.08; P < .001). Neopterin was increased in CM (z-score 4.05 vs 0.09; P < .001), and a cutoff at the upper limit of normal (60 nmol/L) was 100% sensitive for CM. Neurotransmitter metabolite levels were overall preserved. A higher CSF BH4/BH2 ratio was associated with increased odds of survival (odds ratio, 2.94; 95% confidence interval, 1.03-8.33; P = .043). CONCLUSION: Despite low systemic BH4, CSF BH4 was elevated and associated with increased odds of survival in CM. Coma in malaria is not explained by deficiency of BH4-dependent neurotransmitters. Elevated CSF neopterin was 100% sensitive for CM diagnosis and warrants further assessment of its clinical utility for ruling out CM in malaria-endemic areas.


Assuntos
Biopterinas/líquido cefalorraquidiano , Malária Cerebral/mortalidade , Neopterina/líquido cefalorraquidiano , Neurotransmissores/líquido cefalorraquidiano , Pterinas/líquido cefalorraquidiano , Biopterinas/análogos & derivados , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Lactente , Malária Cerebral/líquido cefalorraquidiano , Masculino , Estudos Prospectivos , Valores de Referência , Tanzânia/epidemiologia , Tirosina/análogos & derivados
4.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718287

RESUMO

The low bioavailability of nitric oxide (NO) and its precursor, arginine, contributes to the microvascular pathophysiology of severe falciparum malaria. To better characterize the mechanisms underlying hypoargininemia in severe malaria, we measured the plasma concentrations of amino acids involved in de novo arginine synthesis in children with uncomplicated falciparum malaria (UM; n = 61), children with cerebral falciparum malaria (CM; n = 45), and healthy children (HC; n = 109). We also administered primed infusions of l-arginine uniformly labeled with 13C6 and 15N4 to 8 children with severe falciparum malaria (SM; age range, 4 to 9 years) and 7 healthy children (HC; age range, 4 to 8 years) to measure the metabolic flux of arginine, hypothesizing that arginine flux is increased in SM. Using two different tandem mass spectrometric methods, we measured the isotopic enrichment of arginine in plasma obtained at 0, 60, 90, 120, 150, and 180 min during the infusion. The plasma concentrations of glutamine, glutamate, proline, ornithine, citrulline, and arginine were significantly lower in UM and CM than in HC (P ≤ 0.04 for all pairwise comparisons). Of these, glutamine concentrations were the most markedly decreased: median, 457 µM (interquartile range [IQR], 400 to 508 µM) in HC, 300 µM (IQR, 256 to 365 µM) in UM, and 257 µM (IQR, 195 to 320 µM) in CM. Arginine flux during steady state was not significantly different in SM than in HC by the respective mass spectrometric methods: 93.2 µmol/h/kg of body weight (IQR, 84.4 to 129.3 µmol/h/kg) versus 88.0 µmol/h/kg (IQR, 73.0 to 102.2 µmol/h/kg) (P = 0.247) by the two mass spectrometric methods in SM and 93.7 µmol/h/kg (IQR, 79.1 to 117.8 µmol/h/kg) versus 81.0 µmol/h/kg (IQR, 75.9 to 88.6 µmol/h/kg) (P = 0.165) by the two mass spectrometric methods in HC. A limited supply of amino acid precursors for arginine synthesis likely contributes to the hypoargininemia and NO insufficiency in falciparum malaria in children.


Assuntos
Arginina/sangue , Malária Falciparum/sangue , Plasmodium falciparum/fisiologia , Arginina/química , Criança , Pré-Escolar , Estudos Transversais , Feminino , Glutamina/sangue , Glutamina/química , Humanos , Lactente , Malária Falciparum/parasitologia , Masculino
5.
Open Forum Infect Dis ; 4(2): ofx079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852670

RESUMO

Microvascular function and oxygen consumption affect oxygen homeostasis but have not been assessed in African children with malaria. Microvascular function in Tanzanian children with severe malaria (SM) or uncomplicated malaria were 39% and 72%, respectively, of controls (P < .001). Uncomplicated malaria (P = .04), not SM (P = .06), children had increased oxygen consumption compared with controls.

6.
Sci Rep ; 6: 29151, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385484

RESUMO

We earlier established that nitric oxide (NO) is protective against severe malaria and that arginine and NO levels are reduced in malaria patients. We now show that an M2-like blood monocyte phenotype is significantly associated with hypoargininemia, NO insufficiency, and disease severity in Tanzanian children with falciparum malaria. Compared to control children (n = 106), children with moderately severe (n = 77) and severe falciparum malaria (n = 129) had significantly higher mononuclear cell arginase 1 mRNA, protein, and enzyme activity; lower NOS2 mRNA; lower plasma arginine; and higher plasma IL-10, IL-13, and IL-4. In addition, monocyte CD206 and CD163 and plasma soluble CD163 were elevated. Multivariate logistic regression analysis revealed a significant correlation of risk of severe malaria with both plasma IL-10 and soluble CD163 levels. Monocyte M2 skewing likely contributes to NO bioinsufficiency in falciparum malaria in children. Treatments that reverse the M2 polarization may have potential as adjunctive treatment for malaria.


Assuntos
Polaridade Celular , Malária Falciparum/patologia , Monócitos/patologia , Óxido Nítrico/metabolismo , Índice de Gravidade de Doença , Antígenos CD/metabolismo , Arginase/sangue , Arginina/sangue , Biomarcadores/sangue , Quimiocinas/sangue , Criança , Pré-Escolar , Feminino , Humanos , Malária Falciparum/sangue , Masculino , Modelos Biológicos , Fagócitos/metabolismo
7.
J Infect Dis ; 210(6): 913-22, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24620026

RESUMO

BACKGROUND: Nitric oxide (NO) bioavailability is impaired in children and adults with severe falciparum malaria (SM). Asymmetric-dimethylarginine (ADMA) limits NO production by inhibiting NO synthase and is increased in adult SM. The role of ADMA in the pathogenesis of childhood SM is unknown. METHODS: We studied Tanzanian children ages 4-8 years with malaria. Plasma levels of arginine, arginase, cell-free hemoglobin, ADMA, symmetric-dimethylarginine (SDMA), histidine-rich protein-2, and angiopoietin-2 were measured. RESULTS: ADMA was low in children with SM relative to controls. Nevertheless, arginine and arginine:ADMA ratios were very low in SM. SDMA was high in children with SM. With treatment, arginine and the arginine:ADMA ratio normalized, but SDMA did not. Arginine:ADMA ratios, but not arginine, were significantly and inde-pendent-ly inversely associated with lactate and angiopoietin-2. Plasma arginase was not elevated in those with malaria, and plasma free hemoglobin was elevated only in patients with cerebral malaria. CONCLUSIONS: In contrast to adults, plasma ADMA is reduced in SM in children, but hypoargininemia is more severe. Arginine bioavailability (reflected by low arginine:ADMA ratios) is therefore comparably low in SM in children as in adults. Therapies to increase NO bioavailability in malaria may be useful as adjunctive treatment of severe malaria in children.


Assuntos
Arginina/análogos & derivados , Malária Falciparum/metabolismo , Óxido Nítrico/biossíntese , Doença Aguda , Arginase/sangue , Arginina/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Hemoglobinas/análise , Humanos , Malária Falciparum/enzimologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...