RESUMO
The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising 'social-ecological hope spots', that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , América do Sul , Ecossistema , Povos Indígenas , Diversidade CulturalRESUMO
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.
Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendênciasRESUMO
Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.
Assuntos
Arqueologia , Florestas , Humanos , BrasilRESUMO
Tropical forests are complex systems containing myriad interactions and feedbacks with their biotic and abiotic environments, but as the world changes fast, the future of these ecosystems becomes increasingly uncertain. In particular, global stressors may unbalance the feedbacks that stabilize tropical forests, allowing other feedbacks to propel undesired changes in the whole ecosystem. Here, we review the scientific literature across various fields, compiling known interactions of tropical forests with their environment, including the global climate, rainfall, aerosols, fire, soils, fauna, and human activities. We identify 170 individual interactions among 32 elements that we present as a global tropical forest network, including countless feedback loops that may emerge from different combinations of interactions. We illustrate our findings with three cases involving urgent sustainability issues: (1) wildfires in wetlands of South America; (2) forest encroachment in African savanna landscapes; and (3) synergistic threats to the peatland forests of Borneo. Our findings reveal an unexplored world of feedbacks that shape the dynamics of tropical forests. The interactions and feedbacks identified here can guide future qualitative and quantitative research on the complexities of tropical forests, allowing societies to manage the nonlinear responses of these ecosystems in the Anthropocene.
Assuntos
Ecossistema , Incêndios , Retroalimentação , Florestas , Humanos , Árvores/fisiologia , Clima TropicalRESUMO
The Brazil nut tree (Bertholletia excelsa) is an iconic and economically valuable species that dominates vast swathes of the Amazon Basin. This species seems to have been an important part of human subsistence strategies in the region from at least the Early Holocene, and its current distribution may be a legacy of past human settlement. Because B. excelsa is a long-lived pioneer tree it requires natural or human disturbances to increase light availability in the understory for a successful establishment. However, it remains unclear how the long-term population dynamics of this species have been shaped by pre-colonial and post-colonial human practices. Here, we use tree-ring analyses to look at changes in growing conditions over the past 400 years in a Brazil nut tree population in Central Amazonia. We identify changes in tree recruitment and growth rates associated not only with regional climatic variability, but also major political and socio-economic activities recorded by historical documents in the vicinity of Manaus. We demonstrate that the expansion of a post-colonial political center (Manaus) from the middle of the 18th century onwards coincided with a reduction in recruitment of B. excelsa. We argue that this hiatus suggests the interruption of indigenous management practices, probably due to the collapse of pre-Columbian societies. A second recruitment pulse, and unprecedented cycles of growth release and suppression, aligns with a shift to modern exploitation of the forest into the 20th century. Our findings shed light on how past histories of human-forest interactions can be revealed by the growth rings of trees in Amazonia. Future interdisciplinary analysis of these trees should enable more detailed investigation of how human forest management has changed in this part of the world, through pre-colonial, colonial, and industrial periods of human activity, with potential implications for conservation.
Assuntos
Bertholletia/crescimento & desenvolvimento , Florestas , Atividades Humanas , Brasil , Conservação dos Recursos Naturais , Humanos , Dinâmica PopulacionalRESUMO
Presentamos el caso de un paciente masculino de 28 años de edad, hospitalizado por emergencias, presentndo cuadro tipico de apendicitis aguda, siendo sometido a apendicectomia convencional. En su primer día postoperatorio cursa con dificultad respiratoria se realizan estudios complementarios: radiografia del torax y tromografia computada de torax, evienciando en hemitorax izquierdo asas intestinales, eventración intestinal, posible hernia de diafragma. se realiza laparotomia exploratoria de urgencia, confirmando que se trata de una hernia diafragmática realizandose tratamiento quirúrgio. herniorrafia diafragmatica. La evolución del paciente fue favorable.