Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 4(8): 170153, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878969

RESUMO

The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.

2.
Ecol Evol ; 5(20): 4603-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26668726

RESUMO

During early development, many aposematic species have bright and conspicuous warning appearance, but have yet to acquire chemical defenses, a phenotypic state which presumably makes them vulnerable to predation. Body size and signal luminance in particular are known to be sensitive to variation in early nutrition. However, the relative importance of these traits as determinants of predation risk in juveniles is not known. To address this question, we utilized computer-assisted design (CAD) and information on putative predator visual sensitivities to produce artificial models of postmetamorphic froglets that varied in terms of body size and signal luminance. We then deployed the artificial models in the field and measured rates of attack by birds and unknown predators. Our results indicate that body size was a significant predictor of artificial prey survival. Rates of attack by bird predators were significantly higher on smaller models. However, predation by birds did not differ between artificial models of varying signal luminance. This suggests that at the completion of metamorphosis, smaller froglets may be at a selective disadvantage, potentially because predators can discern they have relatively low levels of chemical defense compared to larger froglets. There is likely to be a premium on efficient foraging, giving rise to rapid growth and the acquisition of toxins from dietary sources in juvenile poison frogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...