Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121160, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761625

RESUMO

Chromium pollution of groundwater sources is a growing global issue, which correlates with various anthropogenic activities. Remediation of both the Cr(VI) and Cr(III), via adsorption technologies, has been championed in recent years due to ease of use, minimal energy requirements, and the potential to serve as a highly sustainable remediation technology. In the present study, a biochar sorbent sourced from pineapple skins, allowed for the upcycling of agricultural waste into water purification technology. The biochar material was chemically modified, through a green amination method, to produce an efficient and selective adsorbent for the removal of both Cr(VI) and Cr(III) from complex aqueous matrices. From FTIR analysis it was evident that the chemical modification introduced new C-N and N-H bonds observed in the modified biochar along with a depletion of N-O and C-H bonds found in the pristine biochar. The amino modified biochar was found to spontaneously adsorb both forms of chromium at room temperature, with binding capacities of 46.5 mg/g of Cr(VI) and 27.1 mg/g of Cr(III). Interference studies, conducted in complex matrices, showed no change in adsorption capacity for Cr(VI) in matrices containing up to 3,000× the concentration of interfering ions. Finally, Cr(III) removal was synergized to 100% adsorption at interfering ions concentrations up to 330× of the analyte, which were suppressed at higher interference concentrations. Considering such performance, the amino modified biochar achieved selective removal for both forms of chromium, showing great potential for utilization in complex chromium pollution sources.

2.
Sci Total Environ ; 912: 168686, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000751

RESUMO

A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.


Assuntos
Água Potável , Nanopartículas Metálicas , Espectrometria de Massas/métodos , Água Potável/análise , Ultrafiltração , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química
3.
Environ Sci Technol ; 56(19): 13719-13727, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137535

RESUMO

Carbon black (CB) is a nanomaterial with numerous industrial applications and high potential for integration into nano-enabled water treatment devices. However, few analytical techniques are capable of measuring CB in water at environmentally relevant concentrations. Therefore, we intended to establish a quantification method for CB with lower detection limits through utilization of trace metal impurities as analytical tracers. Various metal impurities were investigated in six commercial CB materials, and the Monarch 1000 CB was chosen as a model for further testing. The La impurity was chosen as a tracer for spICP-MS analysis based on measured concentration, low detection limits, and lack of polyatomic interferences. CB stability in water and adhesion to the spICP-MS introduction system presented a challenge that was mitigated by the addition of a nonionic surfactant to the matrix. Following optimization, the limit of detection (64 µg/L) and quantification (122 µg/L) for Monarch 1000 CB demonstrated the applicability of this approach to samples expected to contain trace amounts of CB. When compared against gravimetric analysis and UV-visible absorption spectroscopy, spICP-MS quantification exhibited similar sensitivity but with the ability to detect concentrations an order of magnitude lower. Method detection and sensitivity was unaffected when dissolved La was spiked into CB samples at environmentally relevant concentrations. Additionally, a more complex synthetic matrix representative of drinking water caused no appreciable impact to CB quantification. In comparison to existing quantification techniques, this method has achieved competitive sensitivity, a wide working range for quantification, and high selectivity for tracing possible release of CB materials with known metal contents.


Assuntos
Água Potável , Fuligem , Espectrometria de Massas/métodos , Metais , Tamanho da Partícula , Tensoativos
4.
Ecotoxicol Environ Saf ; 206: 111197, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882572

RESUMO

In the present study, Zea mays seedlings grown under nano Cu(OH)2 (nCu), bulk Cu(OH)2 (bCu), and ionic CuSO4 (iCu) compound exposure were harvested after six days. The nutritional profile was determined to be significantly disrupted in the roots by 1000 ppm bCu treatment, resulting in a 58.7% reduction in potassium compared to the control. In the shoots, a significant decrease of manganese was observed for 10 and 1000 ppm iCu treatments with 55.7% and 64.2% reductions, respectively. The overall protein content and catalase (CAT) enzymatic activity, however, remained unaffected in either roots or shoots, while an absence of polyphenol oxidase (PPO) activity was observed for all samples. The genetic expression of defense-related genes, metallothionein (MT), CAT, ascorbate peroxidase (APX), and PPO was assessed. The genetic expression of MT was upregulated 50-fold in roots treated with 1000 ppm bCu. There were no significant differences in CAT transcripts among the various treatments, while APX was upregulated 28 and 19-fold in shoots treated with 10 ppm bCu and 10 ppm nCu, respectively. Meanwhile, APX mRNA levels were downregulated five-fold in shoots treated with 1000 ppm iCu. Thus, indicating that the role of APX in plant defense was reinforced in seedlings exposed to low concentration of particulate Cu compounds. Remarkably, no PPO expression was found in any of the treatments and controls, which suggests this enzyme is expressed only under specific external factors or seedlings have an "immature" cascade signaling activation of the PPO system. Taken together, these results show that bCu and nCu treatments at a low concentration do not compromise vital cell machinery but rather elicit the enhancement of defense responses as observed through the increase in APX expression. Furthermore, under optimal concentrations, these Cu treatments show promise in enhancing corn defense responses, which can ultimately lead to increases in future global crop yields.


Assuntos
Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Cobre/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Cobre/química , Relação Dose-Resposta a Droga , Íons , Manganês/metabolismo , Oxirredução , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Poluentes do Solo/química , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
J Environ Chem Eng ; 7(6)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32864331

RESUMO

In the present study, titanium (IV) sulfide (TiS2) was synthesized and investigated for the removal of Cu2+ and Pb2+ ions from aqueous solutions. TiS2 nanoparticles synthesized through a solvothermal synthesis were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The average particle size for the TiS2 material was determined to be 8.03 ± 0.98 nm from the diffraction pattern. Studies were performed to examine the effects of pH, temperature, time, and interfering ions on the binding of Cu2+ and Pb2+ to the TiS2. As well isotherm studies were performed to determine the binding capacity of TiS2 for both Cu2+ and Pb2+ ions. The pH profile studies showed optimal binding occurred at pH 2 for the sorption of both Cu2+ and Pb2+ to the TiS2. The isotherm studies showed the adsorption capacities at temperatures of 4, 22, and 45°C for Cu2+ were 243, 222, and 153 mg/g, respectively. An opposite trend in the adsorption was observed for Pb2+ binding to the TiS2. The observed binding capacities for Pb2+ were 32, 166, and 357 mg/g, at temperatures of 4, 22, and 45°C, respectively. The thermodynamic parameters for binding showed a non-spontaneous process for the sorption of Cu2+ whereas a spontaneous binding process was observed for the sorption of Pb2+. Additionally, the binding of Cu2+ on TiS2 in the presence of interfering ions (Na+, K+, Mg2+, and/or Ca2+) was observed to decrease at high concentrations; however, the binding of Pb2+ was unaffected by the presence of the same cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...