Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1380049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576607

RESUMO

Introduction: There is currently no vaccine against Chagas disease (ChD), and the medications available confer multiple side effects. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) produces balanced Th1, Th2, and Th17 modulatory immune responses and has improved efficacy in controlling chronic infections through nonspecific immunity. We aimed to improve the response to infection by inducing a stronger immune response and greater protection against the parasite by trained immunity. Methods: BALB/c mice were immunized with BCG subcutaneously, and 60 days later, they were infected with Trypanosoma cruzi intraperitoneally. An evaluation of the progression of the disease from the acute to the chronic stage, analyzing various aspects such as parasitemia, survival, clinical status, and humoral and cellular immune response, as well as the appearance of visceral megas and the histopathological description of target organs, was performed. Results: Vaccination reduced parasitemia by 70%, and 100% survival was achieved in the acute stage; although the presentation of clinical signs was reduced, there was no increase in the antibody titer or in the differential production of the isotypes. Conclusion: Serum cytokine production indicated a proinflammatory response in infected animals, while in those who received BCG, the response was balanced by inducing Th1/Th2-type cytokines, with a better prognosis of the disease in the chronic stage.


Assuntos
Doença de Chagas , Mycobacterium bovis , Animais , Camundongos , Vacina BCG , Parasitemia , Infecção Persistente , Adjuvantes Imunológicos
3.
Tuberculosis (Edinb) ; 144: 102432, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041962

RESUMO

Bacillus Calmette-Guèrin (BCG) remains as the only vaccine employed to prevent tuberculosis (TB) during childhood. Among factors likely contributing to the variable efficacy of BCG is the modification in its antigenic repertoire that may arise from in vitro growth conditions. Our vaccine candidate, BCGΔBCG1419c, improved protection against TB in mice and guinea pigs with bacteria grown in either 7H9 OADC Tween 80 or in Proskauer Beck Tween 80 media in independent studies. Here, we compared the proteomes of planktonic cultures of BCG and BCGΔBCG1419c, grown in both media. Further to this, we compared systemic immunogenicity ex vivo elicited by both types of BCG strains and cultures when used to vaccinate BALB/c mice. Both the parental strain BCG Pasteur ATCC 35734, and its isogenic mutant BCGΔBCG1419c, had several medium-dependent changes. Moreover, ex vivo immune responses to a multiantigenic (PPD) or a single antigenic (Ag85A) stimulus were also medium-dependent. Then, not only the presence or absence of the BCG1419c gene in our strains under study affected the proteome produced in vitro but also that this was affected by culture medium, potentially leading to changes in the capacity to induce ex vivo immune responses.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , Cobaias , Vacina BCG , Proteoma , Mycobacterium tuberculosis/genética , Polissorbatos , Pulmão/microbiologia
4.
Vaccine ; 41(26): 3824-3835, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37164819

RESUMO

The efficacy of BCG vaccines against Mycobacterium tuberculosis (Mtb) strains of lineage 2 (Beijing) in preclinical models and humans has been questioned. We have developed BCG∆BCG1419c, by deletion of BCG1419c in BCG Pasteur, which improved control of tuberculosis (TB) in preclinical models. Here, we compared the capacity of BCG and BCG∆BCG1419c to induce autophagy in murine macrophages, modify c-di-GMP content and transcript levels of BCG1416c, encoding the enzyme responsible for c-di-GMP synthesis/degradation, and of BCG1419c, encoding the phosphodiesterase involved in c-di-GMP degradation. Furthermore, we evaluated proteomic differences in vitro and compared protection against TB produced by a low dose of the HN878-Beijing strain at 3- and 6-months post-infection. We found that BCG∆BCG1419c induced more autophagy and produced different levels of c-di-GMP as well as different transcription of BCG1416c with no expression of BCG1419c. BCG∆BCG1419c differentially produced several proteins, including some involved in interaction with host cells. Vaccination with either BCG strain led to control of bacillary burden in lungs and spleen at 3- but not 6-months post-infection, whereas it reduced pneumonic areas compared with unvaccinated controls at 6 months post-infection. Vaccination with BCG∆BCG1419c delayed progression of lung necrosis as this was observed only at 6 months post-infection. Taken together, compared with BCG, BCG∆BCG1419c increased autophagy, presented different levels of c-di-GMP and transcription of BCG1416c in vitro in a growth-phase dependent manner, modified its proteome and delayed progression of lung pathology produced by a highly virulent Beijing strain.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Masculino , Animais , Camundongos , Vacina BCG , Proteoma , Camundongos Endogâmicos BALB C , Proteômica , Tuberculose/prevenção & controle , Pulmão
5.
J Food Prot ; 86(5): 100085, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003533

RESUMO

Salmonella enterica is a foodborne pathogen that can be internalized into fresh produce. Most of the Salmonella virulence genes are clustered in regions denominated Salmonella Pathogenicity Islands (SPI). SPI-1 encodes a Type Three Secretion System (T3SS-1) and effector proteins that allow the internalization of Salmonella into animal cells. HilD is a transcriptional regulator that induces the expression of SPI-1 genes and other related virulence genes located outside of this island. Here, we assessed the role of hilD in the internalization of Salmonella Newport and Typhimurium into cherry tomatoes, by evaluating either an isolate from an avocado orchard, S. Newport-45 or the laboratory strain S. Typhimurium SL1344 and their isogenic mutants in hilD. The internalization of these bacteria was carried out by using a temperature gradient of 12°C. The transcription of hilD and invA was tested by qRT-PCR experiments. Our results show that S. Newport-45 hilD mutant viable cells obtained from the interior of the fruit were decreased (2.7-fold), compared with those observed for S. Typhimurium SL1344. Interestingly, at 3 days postinoculation, the cells recovered from S. Newport-45 hilD mutant were similar to those recovered from all the strains evaluated, suggesting that hilD is required only for the initial internalization of S. Newport.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
BMC Genomics ; 24(1): 69, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765273

RESUMO

BACKGROUND: Bacillus Calmette-Guérin (BCG) remains the only vaccine to prevent tuberculosis (TB) during childhood, with relatively low to no efficacy against pulmonary TB in adolescents and adults. BCG consists of close to 15 different substrains, where genetic variations among them might contribute to the variable protective efficacy afforded against pulmonary TB. We have shown that the vaccine candidate, BCGΔBCG1419c, which is based on BCG Pasteur, improved protection against chronic TB in murine models, as well as against pulmonary and extrapulmonary TB in guinea pigs. Here, to confirm deletion of the BCG1419c gene and to detect possible genetic variations occurring as a consequence of the spontaneous mutations that may arise during in vitro culture of mycobacteria, the genomes of BCG Pasteur ATCC 35734 and its isogenic derivative, BCGΔBCG1419c, were sequenced and subjected to a comparative analysis between them and against BCG Pasteur 1173P2. RESULTS: The complete catalog of variants in genes relative to the reference genome BCG Pasteur 1173P2 (GenBank NC008769) showed that the parental strain BCG Pasteur ATCC 35734, from which the mutant BCGΔBCG1419c originated, showed five synonymous mutations, three missense mutations, and five codon insertions, whereas the BCGΔBCG1419c mutant reported the same changes. When BCG Pasteur ATCC 35734 and BCGΔBCG1419c were compared, we confirmed that the latter was devoid of the BCG1419c gene, with only one unanticipated SNP at position 2, 828, 791  which we consider has no role in vaccine properties reported thus far. CONCLUSION: We provide evidence that the mutagenesis performed to remove BCG1419c from BCG Pasteur ATCC 35734 solely deleted this gene, and that compared with the reference strain BCG Pasteur 1173P2, few changes were present confirming that they are BCG Pasteur strains, and that changes in immunogenicity or efficacy observed thus far in BCGΔBCG1419c are most likely derived solely from the elimination of the BCG1419c gene.


Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Tuberculose , Animais , Camundongos , Cobaias , Vacina BCG/genética , Mycobacterium bovis/genética , Tuberculose/microbiologia , Genoma
7.
Biomedicines ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359269

RESUMO

Vaccination is an excellent approach to stimulating the host immune response and reducing human morbidity and mortality against microbial infections, such as tuberculosis (TB). Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine in the world and the only vaccine approved by the World Health Organization (WHO) to protect against TB. Although BCG confers "protective" immunity in children against the progression of Mycobacterium tuberculosis (Mtb) infection into active TB, this vaccine is ineffective in protecting adults with active TB manifestations, such as multiple-, extensive-, and total-drug-resistant (MDR/XDR/TDR) cases and the co-existence of TB with immune-compromising health conditions, such as HIV infection or diabetes. Moreover, BCG can cause disease in individuals with HIV infection or other immune compromises. Due to these limitations of BCG, novel strategies are urgently needed to improve global TB control measures. Since live vaccines elicit a broader immune response and do not require an adjuvant, developing recombinant BCG (rBCG) vaccine candidates have received significant attention as a potential replacement for the currently approved BCG vaccine for TB prevention. In this report, we aim to present the latest findings and outstanding questions that we consider worth investigating regarding novel mycobacteria-based live attenuated TB vaccine candidates. We also specifically discuss the important features of two key animal models, mice and rabbits, that are relevant to TB vaccine testing. Our review emphasizes that the development of vaccines that block the reactivation of latent Mtb infection (LTBI) into active TB would have a significant impact in reducing the spread and transmission of Mtb. The results and ideas discussed here are only based on reports from the last five years to keep the focus on recent developments.

8.
Sci Rep ; 12(1): 15824, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138053

RESUMO

Previously, we reported that a hygromycin resistant version of the BCGΔBCG1419c vaccine candidate reduced tuberculosis (TB) disease in BALB/c, C57BL/6, and B6D2F1 mice infected with Mycobacterium tuberculosis (Mtb) H37Rv. Here, the second-generation version of BCGΔBCG1419c (based on BCG Pasteur ATCC 35734, without antibiotic resistance markers, and a complete deletion of BCG1419c) was compared to its parental BCG for immunogenicity and protective efficacy against the Mtb clinical isolate M2 in C57BL/6 mice. Both BCG and BCGΔBCG1419c induced production of IFN-γ, TNF-α, and/or IL-2 by effector memory (CD44+CD62L-), PPD-specific, CD4+ T cells, and only BCGΔBCG1419c increased effector memory, PPD-specific CD8+ T cell responses in the lungs and spleens compared with unvaccinated mice before challenge. BCGΔBCG1419c increased levels of central memory (CD62L+CD44+) T CD4+ and CD8+ cells compared to those of BCG-vaccinated mice. Both BCG strains elicited Th1-biased antigen-specific polyfunctional effector memory CD4+/CD8+ T cell responses at 10 weeks post-infection, and both vaccines controlled Mtb M2 growth in the lung and spleen. Only BCGΔBCG1419c significantly ameliorated pulmonary inflammation and decreased neutrophil infiltration into the lung compared to BCG-vaccinated and unvaccinated mice. Both BCG strains reduced pulmonary TNF-α, IFN-γ, and IL-10 levels. Taken together, BCGΔBCG1419c increased memory CD8+T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG.


Assuntos
Mycobacterium tuberculosis , Pneumonia , Tuberculose , Animais , Vacina BCG , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Interleucina-10 , Interleucina-2 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tuberculina , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa
9.
Biomolecules ; 12(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36009042

RESUMO

Mycobacterium tuberculosis, the causal agent of one of the most devastating infectious diseases worldwide, can evade or modulate the host immune response and remain dormant for many years. In this review, we focus on identifying the local immune response induced in vivo by M. tuberculosis in the lungs of patients with active tuberculosis by analyzing data from untouched cells from bronchoalveolar lavage fluid (BALF) or exhaled breath condensate (EBC) samples. The most abundant resident cells in patients with active tuberculosis are macrophages and lymphocytes, which facilitate the recruitment of neutrophils. The cellular response is characterized by an inflammatory state and oxidative stress produced mainly by macrophages and T lymphocytes. In the alveolar microenvironment, the levels of cytokines such as interleukins (IL), chemokines, and matrix metalloproteinases (MMP) are increased compared with healthy patients. The production of cytokines such as interferon (IFN)-γ and IL-17 and specific immunoglobulin (Ig) A and G against M. tuberculosis indicate that the adaptive immune response is induced despite the presence of a chronic infection. The role of epithelial cells, the processing and presentation of antigens by macrophages and dendritic cells, as well as the role of tissue-resident memory T cells (Trm) for in situ vaccination remains to be understood.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Citocinas , Humanos , Imunidade
10.
Sci Rep ; 12(1): 12377, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858977

RESUMO

The vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) elicits an immune response that is protective against certain forms of tuberculosis (TB); however, because BCG efficacy is limited it is important to identify alternative TB vaccine candidates. Recently, the BCG deletion mutant and vaccine candidate BCGΔBCG1419c was demonstrated to survive longer in intravenously infected BALB/c mice due to enhanced biofilm formation, and better protected both BALB/c and C57BL/6 mice against TB-induced lung pathology during chronic stages of infection, relative to BCG controls. BCGΔBCG1419c-elicited protection also associated with lower levels of proinflammatory cytokines (i.e. IL6, TNFα) at the site of infection in C57BL/6 mice. Given the distinct immune profiles of BCG- and BCGΔBCG1419c-immunized mice during chronic TB, we set out to determine if there are early immunological events which distinguish these two groups, using multi-dimensional flow cytometric analysis of the lungs and other tissues soon after immunization. Our results demonstrate a number of innate and adaptive response differences between BCG- and BCGΔBCG1419c-immunized mice which are consistent with the latter being longer lasting and potentially less inflammatory, including lower frequencies of exhausted CD4+ T helper (TH) cells and higher frequencies of IL10-producing T cells, respectively. These studies suggest the use of BCGΔBCG1419c may be advantageous as an alternative TB vaccine candidate.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose Pulmonar , Tuberculose , Animais , Vacina BCG , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tuberculose/prevenção & controle , Tuberculose Pulmonar/microbiologia
11.
J Med Microbiol ; 71(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35037613

RESUMO

Background. Host genetic factors influence both susceptibility to Mycobacterium tuberculosis infection and immune responses generated by vaccination. Genetically susceptible mice help to study mechanisms of immune protection which may differ from those operating in more resistant models.Methods. In this work, we compared the efficacy of protection conferred by subcutaneous vaccination of hypersusceptible I/St mice with BCG and the first-generation, hygromycin resistant version of the vaccine candidate BCGΔBCG1419c, against tuberculosis (TB), measured as survival, weight loss and replication in lungs. We further characterized the relative presence of immune cells in lungs.Results. We found that in I/St mice, vaccination with BCG or BCGΔBCG1419c provided similar level of protection against TB-driven weight loss and M. tuberculosis replication in lungs, while prolonging median survival time compared with unvaccinated controls. Despite affording similar protection to parental BCG, BCGΔBCG1419c led to a reduced presence of macrophages in lungs during early TB and to an increased neutrophil recruitment to the lungs during chronic TB.Conclusions. BCGΔBCG1419c protects I/St mice in a different manner than wild-type BCG against pulmonary TB by promoting different influx of macrophages and neutrophils at distinct times post-infection. These findings prompt us to suggest that preclinical evaluation of novel TB vaccine candidates should include evaluation of efficacy not only in commonly used resistant inbred mice, but also in susceptible hosts, to further determine their potential application to populations varying in their genetic. This would likely impact their intended use depending on host resistance or susceptibility to TB.


Assuntos
Vacina BCG , Macrófagos/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar , Animais , Vacina BCG/uso terapêutico , Camundongos , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/prevenção & controle , Redução de Peso
12.
Methods Mol Biol ; 2410: 367-385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914058

RESUMO

One of the strategies for the construction of live vaccine candidates is through the generation of genetically defined isogenic strains, containing single or multiple mutations in target-specific genes generated by allelic exchange. This approach allows to produce rational attenuation of or, alternatively, sequence-specific modifications to produce variants of antigenic molecules or change their expression levels. Genetic tools amenable for their use in mycobacterial strains have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. However, the genetic manipulation of Mycobacterium tuberculosis and other slow-growing strains such as Mycobacterium bovis BCG has been delayed by various factors related to their physiology and cell wall characteristics. Notwithstanding the foregoing, the high frequency of illegitimate recombination and the availability of few antibiotic selection markers limit the feasibility of genetic manipulation of mycobacterial strains. This chapter describes a protocol for the generation of defined mutants using recombination tools in an inducible recombination system driven by mycobacterial Che9c phage RecET proteins, originally developed in Dr. Graham Hatfull's group, combined with linearized recombination substrates containing flanking sequences of a locus of interest and an antibiotic resistance gene. These recombination substrates contain sites for removal of antibiotics selection markers. This system allows to make marked and unmarked mutations by homologous recombination in a single step as a result of a double crossover between the homologous regions on the genome and the allelic exchange substrate. In addition, this genetic tool used for engineering mycobacterial genomes performs with lower rates of illegitimate recombination and take on average less time to create knock-out (KO) mutant compared with other techniques.


Assuntos
Mycobacterium bovis , Vacina BCG , Recombinação Homóloga , Mycobacterium bovis/genética , Mycobacterium smegmatis , Mycobacterium tuberculosis/genética
13.
Tuberculosis (Edinb) ; 132: 102153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839080

RESUMO

Elucidating how Mycobacterium tuberculosis produces biofilms, and its impact for tuberculosis (TB) pathogenesis is gaining momentum. Here, we discuss recent findings reported over the last decade, which help us gain insights into the association between biofilm formation and TB pathogenesis. A new appreciation of extracellular TB phenotypes found in lung lesions will drive drug and vaccine discovery forward to new possibilities.


Assuntos
Antituberculosos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Tuberculose/microbiologia , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/metabolismo
14.
Pathogens ; 10(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578171

RESUMO

In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host-pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.

15.
Sci Rep ; 11(1): 12417, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127755

RESUMO

A single intradermal vaccination with an antibiotic-less version of BCGΔBCG1419c given to guinea pigs conferred a significant improvement in outcome following a low dose aerosol exposure to M. tuberculosis compared to that provided by a single dose of BCG Pasteur. BCGΔBCG1419c was more attenuated than BCG in murine macrophages, athymic, BALB/c, and C57BL/6 mice. In guinea pigs, BCGΔBCG1419c was at least as attenuated as BCG and induced similar dermal reactivity to that of BCG. Vaccination of guinea pigs with BCGΔBCG1419c resulted in increased anti-PPD IgG compared with those receiving BCG. Guinea pigs vaccinated with BCGΔBCG1419c showed a significant reduction of M. tuberculosis replication in lungs and spleens compared with BCG, as well as a significant reduction of pulmonary and extrapulmonary tuberculosis (TB) pathology measured using pathology scores recorded at necropsy. Evaluation of cytokines produced in lungs of infected guinea pigs showed that BCGΔBCG1419c significantly reduced TNF-α and IL-17 compared with BCG-vaccinated animals, with no changes in IL-10. This work demonstrates a significantly improved protection against pulmonary and extrapulmonary TB provided by BCGΔBCG1419c in susceptible guinea pigs together with an increased safety compared with BCG in several models. These results support the continued development of BCGΔBCG1419c as an effective vaccine for TB.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/prevenção & controle , Vacinação/métodos , Animais , Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Imunogenicidade da Vacina , Injeções Intradérmicas , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Mycobacterium tuberculosis/imunologia , Células RAW 264.7 , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
16.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35062718

RESUMO

In 2021, most of the world was reasonably still concerned about the COVID-19 pandemic, how cases were up and down in different countries, how the vaccination campaigns were ongoing, and most people were familiar with the speed with which vaccines against SARS-Co-V2 were developed, analyzed, and started to be applied in an attempt to curb the pandemic. Because of this, it may have somehow passed relatively inadvertently for people outside of the field that the vaccine used to control tuberculosis (TB), Mycobacterium bovis Bacille Calmette-Guérin (BCG), was first applied to humans a century ago. Over these years, BCG has been the vaccine applied to most human beings in the world, despite its known lack of efficacy to fully prevent respiratory TB. Several strategies have been employed in the last 20 years to produce a novel vaccine that would replace, or boost, immunity and protection elicited by BCG. In this work, to avoid potential redundancies with recently published reviews, I only aim to present my current thoughts about some of the latest findings and outstanding questions that I consider worth investigating to help develop a replacement or modified BCG in order to successfully fight TB, based on BCG itself.

18.
Pathog Dis ; 79(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33201999

RESUMO

Tuberculosis (TB) is the most important infectious disease worldwide, based on the number of new cases and deaths reported by the World Health Organization. Several vaccine candidates against TB have been characterized at preclinical and clinical levels. The BCGΔBCG1419c vaccine candidate, which lacks the BCG1419c gene that encodes for a c-di-GMP phosphodiesterase, provides improved efficacy against chronic TB, reactivation from latent-like infection and against chronic TB in the presence of type 2 diabetes in murine models. We previously reported that compared with wild type BCG, BCGΔBCG1419c changed levels of several proteins. Here, using a label-free proteomic approach, we confirmed that a novel, second-generation version of BCGΔBCG1419c maintains changes in antigenic proteins already reported, and here we further found differences in secreted proteins, as well as that this new BCGΔBCG1419c version modifies its production of proteins involved in redox and nitrogen/protein metabolism compared with wild type BCG. This work contributes to the proteomic characterization of a novel vaccine candidate that is more effective against TB than parental BCG in diverse murine models.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Vacina BCG/genética , Vacina BCG/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , DNA Bacteriano , Regulação para Baixo , Humanos , Mutação , Oxirredução , Proteoma/genética , Espectrometria de Massas por Ionização por Electrospray , Tuberculose/prevenção & controle , Regulação para Cima
20.
Tuberculosis (Edinb) ; 125: 102005, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33032092

RESUMO

Biofilm formed in vitro by mycobacteria has been associated with increased antibiotic tolerance as compared with planktonic cells. Cellulose has been identified as a component of DTT-exposed biofilms formed by M. tuberculosis. The celA1 gene of M. tuberculosis encodes a cellulase, which could affect the formation of biofilm by slow-growing mycobacteria. In this work, the celA1 gene of M. tuberculosis was cloned into the integrative pMV361 plasmid and then transformed into M. bovis BCG Pasteur to produce BCG:celA1, to have celA1 expressed from the strong promoter hsp60. We compared planktonic and biofilm growth, possible presence of CelA1 in whole protein extracts, quantitated biofilm, presence of monosaccharides, and bacillary burden in lungs after aerosol infection in BALB/c mice. Differences in the appearance of the surface pellicle and of the biofilm attached to the substrate were observed. In biofilms, we observed a significant decrease of glucosamine in BCG:celA1 compared with BCG:pMV361. Finally, BCG:celA1 had lower viable bacteria than the BCG:pMV361 strain after 24 h and 3 weeks post-infection, but no difference was found at 9 weeks post-infection.


Assuntos
Vacina BCG/farmacologia , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Glucosamina/metabolismo , Mycobacterium tuberculosis/genética , Elastase Pancreática/genética , Tuberculose Pulmonar/microbiologia , Adjuvantes Imunológicos/farmacologia , Animais , Biofilmes/efeitos dos fármacos , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Elastase Pancreática/biossíntese , Tuberculose Pulmonar/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...