Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(3): e22817, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809676

RESUMO

Cytokine-induced inflammation and mitochondrial oxidative stress are key drivers of liver tissue injury. Here, we describe experiments modeling hepatic inflammatory conditions in which plasma leakage leads to large amounts of albumin to reach the interstitium and parenchymal surfaces to explore whether this protein plays a role in preserving hepatocyte mitochondria against the damaging actions of the cytotoxic cytokine tumor necrosis factor alpha (TNFα). Hepatocytes and precision-cut liver slices were cultured in the absence or presence of albumin in the cell media and then exposed to mitochondrial injury with the cytokine TNFα. The homeostatic role of albumin was also investigated in a mouse model of TNFα-mediated liver injury induced by lipopolysaccharide and D-galactosamine (LPS/D-gal). Mitochondrial ultrastructure, oxygen consumption, ATP and reactive oxygen species (ROS) generation, fatty acid ß-oxidation (FAO), and metabolic fluxes were assessed by transmission electron microscopy (TEM), high-resolution respirometry, luminescence-fluorimetric-colorimetric assays and NADH/FADH2 production from various substrates, respectively. TEM analysis revealed that in the absence of albumin, hepatocytes were more susceptible to the damaging actions of TNFα and showed more round-shaped mitochondria with less intact cristae than hepatocytes cultured with albumin. In the presence of albumin in the cell media, hepatocytes also showed reduced mitochondrial ROS generation and FAO. The mitochondria protective actions of albumin against TNFα damage were associated with the restoration of a breakpoint between isocitrate and α-ketoglutarate in the tricarboxylic acid cycle and the upregulation of the antioxidant activating transcription factor 3 (ATF3). The involvement of ATF3 and its downstream targets was confirmed in vivo in mice with LPS/D-gal-induced liver injury, which showed increased hepatic glutathione levels, indicating a reduction in oxidative stress after albumin administration. These findings reveal that the albumin molecule is required for the effective protection of liver cells from mitochondrial oxidative stress induced by TNFα. These findings emphasize the importance of maintaining the albumin levels in the interstitial fluid within the normal range to protect the tissues against inflammatory injury in patients with recurrent hypoalbuminemia.


Assuntos
Albuminas , Hepatopatias , Fator de Necrose Tumoral alfa , Animais , Camundongos , Albuminas/metabolismo , Apoptose , Citocinas/metabolismo , Hepatócitos/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Hepatopatias/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788956

RESUMO

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Conservação de Recursos Energéticos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Ácidos Graxos Ômega-6/química , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos Transgênicos , Ácidos Graxos/metabolismo
3.
Int J Obes (Lond) ; 46(11): 1960-1969, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35896710

RESUMO

BACKGROUND AND AIM: Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. SUBJECTS AND METHODS: Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. RESULTS: We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15-40 kDa) and not those from intermediate molecular sizes (75-350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1ß, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/ß complex supporting its pro-inflammatory role through NF-κB activation. CONCLUSION: Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.


Assuntos
Ácido Hialurônico , Receptor 2 Toll-Like , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Receptor 2 Toll-Like/metabolismo , NF-kappa B , Interleucina-8 , Leucócitos Mononucleares , Hialuronan Sintases , Quinase I-kappa B , Ficoll , Inflamação/metabolismo , Citocinas/metabolismo , Imunidade Inata , Obesidade
4.
Hepatol Commun ; 6(6): 1443-1456, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35178899

RESUMO

Albumin infusions are therapeutically used to revert hypoalbuminemia and to replace the extensively oxidized albumin molecule circulating in patients with acutely decompensated (AD) cirrhosis. Because albumin has high affinity for lipids, here we characterized the albumin lipidome in patients with AD and explored the albumin effects on the release of fatty acid (FA)-derived lipid mediators by peripheral leukocytes. Lipids and lipid mediators were measured by liquid chromatography-tandem mass spectrometry in albumin-enriched and albumin-depleted plasma fractions separated by affinity chromatography and in leukocyte incubations from 18 patients with AD and 10 healthy subjects (HS). Lipid mediators were also measured in 41 patients with AD included in an albumin therapy trial. The plasma lipidome associated with AD cirrhosis was characterized by generalized suppression of all lipid classes except FAs. In contrast to HS, albumin from patients with AD had lower content of polyunsaturated FAs (PUFAs), especially of the omega-3-PUFA docosahexaenoic acid. Consistent with this, the PUFA-derived lipid mediator landscape of albumin from patients with AD was dominated by lower content of monohydroxy FA precursors of anti-inflammatory/pro-resolving lipid mediators (i.e., 15-hydroxyeicosatetraenoic acid [15-HETE]). In addition, albumin from patients with AD was depleted in prostaglandin (PG) E2 , suggesting that this proinflammatory PG primarily travels disassociated to albumin in these patients. Incubation of leukocytes with exogenous albumin reduced PG production while inducing 15-lipoxygenase expression and 15-HETE release. Similar effects were seen under lipopolysaccharide plus N-formylmethionyl-leucyl-phenylalanine-stimulated conditions. Finally, PG levels were lower in patients with AD receiving albumin therapy, whereas 15-HETE was increased after albumin treatment compared with baseline. Conclusion: Our findings indicate that the albumin lipid composition is severely disorganized in AD cirrhosis and that administration of exogenous albumin has the potential to redirect leukocyte biosynthesis from pro-inflammatory to pro-resolving lipid mediators.


Assuntos
Ácidos Graxos Ômega-3 , Lipidômica , Albuminas , Eicosanoides , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Inflamação , Cirrose Hepática/tratamento farmacológico
5.
J Hepatol ; 76(1): 93-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450236

RESUMO

BACKGROUND & AIMS: Patients with acute-on-chronic liver failure (ACLF) present a systemic hyperinflammatory response associated with increased circulating levels of small-molecule metabolites. To investigate whether these alterations reflect inadequate cell energy output, we assessed mitochondrial morphology and central metabolic pathways with emphasis on the tricarboxylic acid (TCA) cycle in peripheral leukocytes from patients with acutely decompensated (AD) cirrhosis, with and without ACLF. METHODS: The study included samples from patients with AD cirrhosis (108 without and 128 with ACLF) and 41 healthy individuals. Leukocyte mitochondrial ultrastructure was visualized by transmission electron microscopy and cytosolic and mitochondrial metabolic fluxes were determined by assessing NADH/FADH2 production from various substrates. Plasma GDF15 and FGF21 were determined by Luminex and acylcarnitines by LC-MS/MS. Gene expression was analyzed by RNA-sequencing and PCR-based glucose metabolism profiler array. RESULTS: Mitochondrial ultrastructure in patients with advanced cirrhosis was distinguished by cristae rarefication and swelling. The number of mitochondria per leukocyte was higher in patients, accompanied by a reduction in their size. Increased FGF21 and C6:0- and C8:0-carnitine predicted mortality whereas GDF15 strongly correlated with a gene set signature related to leukocyte activation. Metabolic flux analyses revealed increased energy production in mononuclear leukocytes from patients with preferential involvement of extra-mitochondrial pathways, supported by upregulated expression of genes encoding enzymes of the glycolytic and pentose phosphate pathways. In patients with ACLF, mitochondrial function analysis uncovered break-points in the TCA cycle at the isocitrate dehydrogenase and succinate dehydrogenase level, which were bridged by anaplerotic reactions involving glutaminolysis and nucleoside metabolism. CONCLUSIONS: Our findings provide evidence at the cellular, organelle and biochemical levels that severe mitochondrial dysfunction governs immunometabolism in leukocytes from patients with AD cirrhosis and ACLF. LAY SUMMARY: Patients at advanced stages of liver disease have dismal prognosis due to vital organ failures and the lack of treatment options. In this study, we report that the functioning of mitochondria, which are known as the cell powerhouse, is severely impaired in leukocytes of these patients, probably as a consequence of intense inflammation. Mitochondrial dysfunction is therefore a hallmark of advanced liver disease.


Assuntos
Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Fatores Imunológicos/farmacologia , Doenças Mitocondriais/complicações , Humanos , Fatores Imunológicos/efeitos adversos , Leucócitos/microbiologia , Leucócitos Mononucleares/metabolismo , Doenças Mitocondriais/fisiopatologia , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/estatística & dados numéricos
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(11): 159023, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352389

RESUMO

Inflammation is a characteristic feature of virtually all acute and chronic liver diseases. It intersects different liver pathologies from the early stages of liver injury, when the inflammatory burden is mild-to-moderate, to very advanced stages of liver disease, when the inflammatory response is very intense and drives multiple organ dysfunction and failure(s). The current review describes the most relevant features of the inflammatory process in two different clinical entities across the liver disease spectrum, namely non-alcoholic steatohepatitis (NASH) and acute-on-chronic liver failure (ACLF). Special emphasis is given within these two disease conditions to gather the most relevant data on the specialized pro-resolving mediators that orchestrate the resolution of inflammation, a tightly controlled process which dysregulation commonly associates with chronic inflammatory conditions.


Assuntos
Mediadores da Inflamação/metabolismo , Hepatopatias/metabolismo , Animais , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos
7.
FASEB J ; 35(2): e21365, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496031

RESUMO

Besides its oncotic power, albumin exerts pleiotropic actions, including binding, transport, and detoxification of endogenous and exogenous molecules, antioxidant activity, and modulation of immune and inflammatory responses. In particular, recent studies have demonstrated that albumin reduces leukocyte cytokine production. Here, we investigated whether albumin also has the ability to protect tissues from the damaging actions of these inflammatory mediators. We circumscribed our investigation to tumor necrosis factor (TNF) α, which exemplifies the connection between immunity and tissue injury. In vivo experiments in analbuminemic mice showed that these mice exhibit a more pronounced response to a model of TNFα-mediated liver injury induced by the administration of lipopolysaccharide (LPS) and D-galactosamine (D-gal). A tissue protective action against LPS/D-gal liver injury was also observed during the administration of human albumin to humanized mice expressing the human genes for albumin and neonatal Fc receptor (hAlb+/+ /hFcRn+/+ ) with preestablished carbon tetrachloride (CCl4 )-induced early cirrhosis. The cytoprotective actions of albumin against TNFα-induced injury were confirmed ex vivo, in precision-cut liver slices, and in vitro, in primary hepatocytes in culture. Albumin protective actions were independent of its scavenging properties and were reproduced by recombinant human albumin expressed in Oryza sativa. Albumin cytoprotection against TNFα injury was related to inhibition of lysosomal cathepsin B leakage accompanied by reductions in mitochondrial cytochrome c release and caspase-3 activity. These data provide evidence that in addition to reducing cytokines, the albumin molecule also has the ability to protect tissues against inflammatory injury.


Assuntos
Albuminas/metabolismo , Anti-Inflamatórios/farmacologia , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Albuminas/farmacologia , Albuminas/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Lipopolissacarídeos/toxicidade , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Transl Med ; 12(566)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087502

RESUMO

Human serum albumin (HSA) is an emerging treatment for preventing excessive systemic inflammation and organ failure(s) in patients with acutely decompensated (AD) cirrhosis. Here, we investigated the molecular mechanisms underlying the immunomodulatory properties of HSA. Administration of HSA to patients with AD cirrhosis with elevated circulating bacterial DNA rich in unmethylated cytosine-phosphate-guanine dideoxynucleotide motifs (CpG-DNA) was associated with reduced plasma cytokine concentrations. In isolated leukocytes, HSA abolished CpG-DNA-induced cytokine expression and release independently of its oncotic and scavenging properties. Similar anti-inflammatory effects were observed with recombinant human albumin. HSA exerted widespread changes on the immune cell transcriptome, specifically in genes related to cytokines and type I interferon responses. Our data revealed that HSA was taken up by leukocytes and internalized in vesicles positively stained with early endosome antigen 1 and colocalized with CpG-DNA in endosomes, where the latter binds to Toll-like receptor 9 (TLR9), its cognate receptor. Furthermore, HSA also inhibited polyinosinic:polycytidylic acid- and lipopolysaccharide-induced interferon regulatory factor 3 phosphorylation and TIR domain-containing adapter-inducing interferon-ß-mediated responses, which are exclusive of endosomal TLR3 and TLR4 signaling, respectively. The immunomodulatory actions of HSA did not compromise leukocyte defensive mechanisms such as phagocytosis, efferocytosis, and intracellular reactive oxygen species production. The in vitro immunomodulatory effects of HSA were confirmed in vivo in analbuminemic humanized neonatal Fc receptor transgenic mice. These findings indicate that HSA internalizes in immune cells and modulates their responses through interaction with endosomal TLR signaling, thus providing a mechanism for the benefits of HSA infusions in patients with cirrhosis.


Assuntos
Citocinas , Transdução de Sinais , Albuminas , Humanos , Leucócitos , Cirrose Hepática/tratamento farmacológico
9.
Proc Natl Acad Sci U S A ; 117(45): 28263-28274, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106416

RESUMO

Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3',5'-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6CHigh- and higher Ly6CLow-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1ß, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1ß. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit.


Assuntos
Moléculas de Adesão Celular/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfoproteínas/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Guanilil Ciclase Solúvel/farmacologia
10.
FASEB J ; 33(6): 7072-7083, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840838

RESUMO

Specialized proresolving mediators (SPMs) biosynthesized from docosahexaenoic acids (DHAs) including resolvins (Rvs), protectins, and maresins are potent endogenous autacoids that actively resolve inflammation, protect organs, and stimulate tissue regeneration. Our hypothesis was that failure of resolution programs may lead to unremitting inflammation in obesity, contributing to the development of metabolic comorbidities in this condition. Obese individuals with persistent low-grade systemic inflammation showed reduced leukocyte production of the DHA-derived monohydroxy fatty acid 17-hydroxy-DHA (HDHA) and unbalanced formation of SPMs (in particular D-series Rvs) accompanied by enhanced production of proinflammatory lipid mediators such as leukotriene B4. Mechanistic studies attributed this impairment to reduced 15-lipoxygenase (LOX) activity rather than altered DHA cellular uptake. Moreover, leukocytes from obese individuals exhibited decreased 5-LOX levels and reduced 5-LOX Ser271 phosphorylation and distinct intracellular 5-LOX redistribution. However, 15-LOX appears to be the most critical factor for the deficient production of SPMs by obese leukocytes because the formation of D-series Rvs was completely rescued by incubation with the intermediate precursor 17-HDHA. These data provide proof of concept that administration of intermediate precursors of SPM biosynthesis (e.g., 17-HDHA) could be more efficient in overriding impaired formation of these proresolving lipid mediators in conditions characterized by dysfunctional LOX activity, such as obesity.-López-Vicario, C., Titos, E., Walker, M. E., Alcaraz-Quiles, J., Casulleras, M., Durán-Güell, M., Flores-Costa, R., Pérez-Romero, N., Forné, M., Dalli, J., Clària, J. Leukocytes from obese individuals exhibit an impaired SPM signature.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Leucócitos/metabolismo , Obesidade/metabolismo , Estudos de Casos e Controles , Ácidos Docosa-Hexaenoicos/química , Humanos , Inflamação , Metabolismo dos Lipídeos
11.
J Leukoc Biol ; 105(1): 25-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601102

RESUMO

The prototypic proinflammatory cytokine IL-1ß plays a central role in innate immunity and inflammatory disorders. The formation of mature IL-1ß from an inactive pro-IL-1ß precursor is produced via nonconventional multiprotein complexes called the inflammasomes, of which the most common is the nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome composed by NLRP3, (ASC) apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD), and caspase-1. Specialized proresolving mediators (SPMs) promote resolution of inflammation, which is an essential process to maintain host health. SPMs prevent excessive inflammation by terminating the inflammatory response and returning to tissue homeostasis without immunosupression. This study tested the hypothesis that modulation of the NLRP3 inflammasome in macrophages is one mechanism involved in the SPM-regulated processes during resolution. Our findings demonstrate that the SPM resolvin D2 (RvD2) suppressed the expression of pro-IL-1ß and reduced the secretion of mature IL-1ß in bone marrow-derived macrophages challenged with LPS+ATP (classical NLRP3 inflammasome model) or LPS+palmitate (lipotoxic model). Similar findings were observed in thioglycolate-elicited peritoneal macrophages, in which RvD2 remarkably reduced ASC oligomerization, inflammasome assembly, and caspase-1 activity. In vivo, in a self-resolving zymosan A-induced peritonitis model, RvD2 blocked the NLRP3 inflammasome leading to reduced release of IL-1ß into the exudates, repression of osteopontin, and MCP-1 expression and induction of M2 markers of resolution (i.e., CD206 and arginase-1) in peritoneal macrophages. RvD2 inhibitory actions were receptor mediated and were abrogated by a selective GPR18 antagonist. Together, these findings support the hypothesis that SPMs have the ability to inhibit the priming and to expedite the deactivation of the NLRP3 inflammasome in macrophages during the resolution process.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Inflamassomos/metabolismo , Ativação de Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células da Medula Óssea/citologia , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Inflamação/patologia , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ácido Palmítico/farmacologia , Fenótipo , Zimosan
12.
Hepatology ; 68(5): 1937-1952, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30070728

RESUMO

Decompensated cirrhosis is characterized by exuberant systemic inflammation. Although the inducers of this feature remain unknown, the presence of circulating forms of oxidized albumin, namely human nonmercaptalbumin 1 (HNA1) and HNA2, is a common finding in cirrhosis. The aim of this study was to explore the ability of these oxidized albumin forms to induce systemic inflammation by triggering the activation of peripheral leukocytes. We observed significantly higher plasma levels of HNA1 and HNA2 in patients with cirrhosis (n = 256) compared to healthy volunteers (n = 48), which gradually increased during the course from compensated to decompensated to acute-on-chronic liver failure. Plasma HNA1 and HNA2 levels significantly correlated with inflammatory markers (i.e., interleukin-6 [IL-6], IL-1ß, tumor necrosis factor-alpha [TNF-α] and IL-8) in patients with cirrhosis. To directly test the inflammatory effects of HNA1 and HNA2 on leukocytes, these oxidized albumin forms were prepared ex vivo and their posttranslational modifications monitored by liquid chromatography (LC)-quadrupole time-of-flight/mass spectrometry (MS). HNA1, but not HNA2, increased IL-1ß, IL-6, and TNF-α mRNA and protein expression in leukocytes from both healthy volunteers and patients with cirrhosis. Moreover, HNA1 up-regulated the expression of eicosanoid-generating enzymes (i.e., cyclooxygenase-2 [COX-2] and microsomal prostaglandin E [PGE] synthase 1) and the production of inflammatory eicosanoids (PGE2 , PGF2α , thromboxane B2 , and leukotriene B4 ), as determined by LC-electrospray ionization-MS/MS. The inflammatory response to HNA1 was more pronounced in peripheral blood mononuclear cells (PBMCs) and marginal in polymorphonuclear neutrophils. Kinome analysis of PBMCs revealed that HNA1 induced the phosphorylation of p38 mitogen-activated protein kinase, the inhibition of which blocked HNA1-induced cytokine and COX-2 induction. Conclusion: HNA1 triggers an inflammatory response in PBMCs, providing a rationale for its removal and replacement by reduced albumin in the prevention of systemic inflammation in patients with advanced liver disease.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Cirrose Hepática/metabolismo , Albumina Sérica Humana/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Western Blotting , Cromatografia Líquida , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Falência Hepática/etiologia , Falência Hepática/metabolismo , Masculino , Pessoa de Meia-Idade , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
13.
Br J Pharmacol ; 175(6): 953-967, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29281143

RESUMO

BACKGROUND AND PURPOSE: Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome and is characterized by steatosis, inflammation and fibrosis. Soluble guanylate cyclase (sGC) stimulation reduces inflammation and fibrosis in experimental models of lung, kidney and heart disease. Here, we tested whether sGC stimulation is also effective in experimental NASH. EXPERIMENTAL APPROACH: NASH was induced in mice by feeding a choline-deficient, l-amino acid-defined, high-fat diet. These mice received either placebo or the sGC stimulator IW-1973 at two different doses (1 and 3 mg·kg-1 ·day-1 ) for 9 weeks. IW-1973 was also tested in high-fat diet (HFD)-induced obese mice. Steatosis, inflammation and fibrosis were assessed by Oil Red O, haematoxylin-eosin, Masson's trichrome, Sirius Red, F4/80 and α-smooth muscle actin staining. mRNA expression was assessed by quantitative PCR. Levels of IW-1973, cytokines and cGMP were determined by LC-MS/MS, Luminex and enzyme immunoassay respectively. KEY RESULTS: Mice with NASH showed reduced cGMP levels and sGC expression, increased steatosis, inflammation, fibrosis, TNF-α and MCP-1 levels and up-regulated collagen types I α1 and α2, MMP2, TGF-ß1 and tissue metallopeptidase inhibitor 1 expression. IW-1973 restored hepatic cGMP levels and sGC expression resulting in a dose-dependent reduction of hepatic inflammation and fibrosis. IW-1973 levels were ≈40-fold higher in liver tissue than in plasma. IW-1973 also reduced hepatic steatosis and adipocyte hypertrophy secondary to enhanced autophagy in HFD-induced obese mice. CONCLUSIONS AND IMPLICATIONS: Our data indicate that sGC stimulation prevents hepatic steatosis, inflammation and fibrosis in experimental NASH. These findings warrant further evaluation of IW-1973 in the clinical setting.


Assuntos
Inflamação/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Guanilil Ciclase Solúvel/efeitos dos fármacos , Animais , Cromatografia Líquida/métodos , GMP Cíclico/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Reação em Cadeia da Polimerase , Guanilil Ciclase Solúvel/metabolismo , Espectrometria de Massas em Tandem/métodos
14.
FASEB J ; 31(12): 5384-5398, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28768719

RESUMO

Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are hallmarks of nonalcoholic fatty liver disease (NAFLD), which is the hepatic manifestation of the metabolic syndrome associated with obesity. The specialized proresolving lipid mediator maresin 1 (MaR1) preserves tissue homeostasis by exerting cytoprotective actions, dampening inflammation, and expediting its timely resolution. Here, we explored whether MaR1 protects liver cells from lipotoxic and hypoxia-induced ER stress. Mice were rendered obese by high-fat diet feeding, and experiments were performed in primary hepatocytes, Kupffer cells, and precision-cut liver slices (PCLSs). Palmitate-induced lipotoxicity increased ER stress and altered autophagy in hepatocytes, effects that were prevented by MaR1. MaR1 protected hepatocytes against lipotoxicity-induced apoptosis by activating the UPR prosurvival mechanisms and preventing the excessive up-regulation of proapoptotic pathways. Protective MaR1 effects were also seen in hepatocytes challenged with hypoxia and TNF-α-induced cell death. High-throughput microRNA (miRNA) sequencing revealed that MaR1 actions were associated with specific miRNA signatures targeting both protein folding and apoptosis. MaR1 also prevented lipotoxic-triggered ER stress and hypoxia-induced inflammation in PCLSs and enhanced Kupffer cell phagocytic capacity. Together, these findings describe the ability of MaR1 to oppose ER stress in liver cells under conditions frequently encountered in NAFLD.-Rius, B., Duran-Güell, M., Flores-Costa, R., López-Vicario, C., Lopategi, A., Alcaraz-Quiles, J., Casulleras, M., Lozano, J. J., Titos, E., Clària, J. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress.


Assuntos
Antígenos Ly/metabolismo , Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/metabolismo , Hipóxia/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Animais , Antígenos Ly/genética , Apoptose/genética , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/genética , Células de Kupffer/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...