Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 11: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29371883

RESUMO

BACKGROUND: Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species Agave tequilana and Agave salmiana were subjected to pretreatment using the ammonia fiber expansion (AFEX) process. The pretreatment conditions were optimized using a response surface design methodology. We also identified commercial enzyme mixtures that maximize sugar yields for AFEX-pretreated agave bagasse and leaf matter, at ~ 6% glucan (w/w) loading enzymatic hydrolysis. Finally, the pretreated agave hydrolysates (at a total solids loading of ~ 20%) were used for ethanol fermentation using the glucose- and xylose-consuming strain Saccharomyces cerevisiae 424A (LNH-ST), to determine ethanol yields at industrially relevant conditions. RESULTS: Low-severity AFEX pretreatment conditions are required (100-120 °C) to enable efficient enzymatic deconstruction of the agave cell wall. These studies showed that AFEX-pretreated A. tequilana bagasse, A. tequilana leaf fiber, and A. salmiana bagasse gave ~ 85% sugar conversion during enzyme hydrolysis and over 90% metabolic yields of ethanol during fermentation without any washing step or nutrient supplementation. On the other hand, although lignocellulosic A. salmiana leaf gave high sugar conversions, the hydrolysate could not be fermented at high solids loadings, apparently due to the presence of natural inhibitory compounds. CONCLUSIONS: These results show that AFEX-pretreated agave residues can be effectively hydrolyzed at high solids loading using an optimized commercial enzyme cocktail (at 25 mg protein/g glucan) producing > 85% sugar conversions and over 40 g/L bioethanol titers. These results show that AFEX technology has considerable potential to convert lignocellulosic agave residues to bio-based fuels and chemicals in a biorefinery.

2.
Bioresour Technol ; 211: 216-23, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27017132

RESUMO

A comparative analysis of the response of agave bagasse (AGB) to pretreatment by ammonia fiber expansion (AFEX™), autohydrolysis (AH) and ionic liquid (IL) was performed using 2D nuclear magnetic resonance (NMR) spectroscopy, wet chemistry, enzymatic saccharification and mass balances. It has been found that AFEX pretreatment preserved all carbohydrates in the biomass, whereas AH removed 62.4% of xylan and IL extracted 25% of lignin into wash streams. Syringyl and guaiacyl lignin ratio of untreated AGB was 4.3, whereas for the pretreated biomass the ratios were 4.2, 5.0 and 4.7 for AFEX, AH and IL, respectively. Using NMR spectra, the intensity of ß-aryl ether units in aliphatic, anomeric, and aromatic regions decreased in all three pretreated samples when compared to untreated biomass. Yields of glucose plus xylose in the major hydrolysate stream were 42.5, 39.7 and 26.9kg per 100kg of untreated AGB for AFEX, IL and AH, respectively.


Assuntos
Agave/química , Biomassa , Carboidratos/isolamento & purificação , Celulose/química , Fibras na Dieta/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA