Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micron ; 118: 50-57, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590254

RESUMO

In this work, the porosity of the layers of calcified chicken eggshell (vertical crystal layer VCL, palisade layer PL and mammillary layer ML) was evaluated using atomic force microscopy (AFM) and image processing (IP). AFM topographic images were obtained from different locations for each layer and along the cross-section of calcified eggshell. Roughness parameters, surface area values, pore size and shape, surface porosity, area occupied by pores and pore density were obtained from AFM and IP. It was observed that the thickest layer (PL) exhibited the highest degree of porosity (surface porosity = 2.75 ± 1.68%, pore density = 162 ± 60 pores/µm2) when compared to the other two layers. In general, the pores located in all layers ("bubble pores") had circular shape and similar sizes. Measurements revealed a porosity gradient along the cross-section which varied with position, i.e., increasing surface porosity from the VCL towards the region of the PL closer to the ML, and decreasing surface porosity from this location towards the ML innermost surface. This suggests that the calcified eggshell has a sandwich-like structure where porosity may influence gas exchange and mechanical properties. The combination of AFM with IP presented here provides a simple and precise method to study porosity in calcified chicken eggshell, and this methodology could be used to examine other types of porous biological materials.

2.
Sci Rep ; 8(1): 9668, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941916

RESUMO

Fruit and nut shells can exhibit high hardness and toughness. In the peninsula of Yucatan, Mexico, the fruit of the Cocoyol palm tree (Acrocomia mexicana) is well known to be very difficult to break. Its hardness has been documented since the 1500 s, and is even mentioned in the popular Maya legend The Dwarf of Uxmal. However, until now, no scientific studies quantifying the mechanical performance of the Cocoyol endocarp has been found in the literature to prove or disprove that this fruit shell is indeed "very hard". Here we report the mechanical properties, microstructure and hardness of this material. The mechanical measurements showed compressive strength values of up to ~150 and ~250 MPa under quasi-static and high strain rate loading conditions, respectively, and microhardness of up to ~0.36 GPa. Our findings reveal a complex hierarchical structure showing that the Cocoyol shell is a functionally graded material with distinctive layers along the radial directions. These findings demonstrate that structure-property relationships make this material hard and tough. The mechanical results and the microstructure presented herein encourage designing new types of bioinspired superior synthetic materials.


Assuntos
Arecaceae , Frutas , Fenômenos Mecânicos , Fenômenos Biomecânicos , Força Compressiva , Dureza
3.
Heliyon ; 3(6): e00329, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28653042

RESUMO

The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm-3, and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26465480

RESUMO

Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

5.
Micron ; 66: 37-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25080275

RESUMO

When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 µm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...