Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 113: 105465, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331498

RESUMO

Trypanosoma cruzi is the parasite responsible for Chagas disease. The parasite has been classified into six taxonomic assemblages: TcI-TcVI and TcBat (aka Discrete Typing Units or Near-Clades). No studies have focused on describing the genetic diversity of T. cruzi in the northwestern region of Mexico. Within the Baja California peninsula lives Dipetalogaster maxima, the largest vector species for CD. The study aimed to describe the genetic diversity of T. cruzi within D. maxima. A total of three Discrete Typing Units (DTUs) were found (TcI, TcIV, and TcIV-USA). TcI was the predominant DTU found (∼75% of samples), in concordance with studies from the southern USA, one sample was described as TcIV while the other ∼20% pertained to TcIV-USA, which has recently been proposed to have enough genetic divergence from TcIV, to merit its own DTU. Potential phenotype differences between TcIV and TcIV-USA should be assessed in future studies.


Assuntos
Doença de Chagas , Triatominae , Trypanosoma cruzi , Animais , Filogenia , México/epidemiologia , Genótipo , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Variação Genética
2.
Med Vet Entomol ; 36(4): 469-479, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35722673

RESUMO

Dipetalogaster maxima is a primary vector of Chagas disease in the Cape region of Baja California Sur, Mexico. The geographic distribution of D. maxima is limited to this small region of the Baja California Peninsula in Mexico. Our study aimed to construct the ecological niche models (ENMs) of this understudied vector species and the parasite responsible for Chagas disease (Trypanosoma cruzi). We modelled the ecological niches of both species under current and future climate change projections in 2050 using four Representative Concentration Pathways (RCPs): RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. We also assessed the human population at risk of exposure to D. maxima bites, the hypothesis of ecological niche equivalency and similarity between D. maxima and T. cruzi, and finally the abundance centroid hypothesis. The ENM predicted a higher overlap between both species in the Western and Southern coastal regions of the Baja California Peninsula. The climate change scenarios predicted a Northern shift in the ecological niche of both species. Our findings suggested that the highly tourist destination of Los Cabos is a high-risk zone for Chagas disease circulation. Overall, the study provides valuable data to vector surveillance and control programs.


Assuntos
Doença de Chagas , Parasitos , Triatominae , Trypanosoma cruzi , Humanos , Animais , México/epidemiologia , Mudança Climática , Insetos Vetores/parasitologia , Doença de Chagas/veterinária , Triatominae/parasitologia
3.
Infect Genet Evol ; 99: 105251, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183751

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing Unit (DTU) I (TcI), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and sequence divergence analyses of our new data plus all previously published sequence data from those four loci collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector control programs for Chagas disease in southern USA and Mexico.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Insetos Vetores/parasitologia , Tipagem de Sequências Multilocus , Filogenia , Sudoeste dos Estados Unidos/epidemiologia , Texas/epidemiologia , Trypanosoma cruzi/genética
4.
Infect Genet Evol ; 55: 378-383, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27418234

RESUMO

The State of Baja California (BC) exhibits the highest incidence and prevalence rates of tuberculosis (TB), and multidrug-resistant TB (MDR-TB) in Mexico. However information about the circulation of M. tuberculosis lineages in BC and Mexico as a whole is limited. Here, we describe the genetic relationship and genetic diversity among M. tuberculosis clinical isolates (n=140) collected in BC between October 2009 and April 2011 with other regions of Mexico, the United States, and Latin America. All specimens were genotyped based on 24 mycobacterial interspersed repetitive units (MIRU)-variable number of tandem repeats (VNTR) loci. Population structure and minimum spanning tree (MST) analyses were used to assess the genetic diversity and distribution of BC isolates in comparison to USA and South America strains. Among the nine lineages observed, LAM, Haarlem and S were the most frequent identified in BC. Population structure analysis clustered most BC isolates (41%) into three distinctive groups that included strains from San Diego and South America, whereas other BC strains (22%) clustered with other Mexican strains. A subset of isolates (12%) seemed to be autochthonous of BC, while 25% were cosmopolitan and grouped into multiple clusters. It is highly likely that the TB genetic structure observed in BC is due to human migration. Additional studies are required to determine the mechanism involved in the phylogeographic distribution of M. tuberculosis in Mexico. Implementation of domestic molecular TB surveillance programs is required to better understand the molecular epidemiology of TB not only in the region but at the national level.


Assuntos
Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Estudos Transversais , Feminino , Variação Genética , Genótipo , Migração Humana , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Repetições Minissatélites , Epidemiologia Molecular , Mycobacterium tuberculosis/classificação , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
5.
Infect Genet Evol ; 55: 384-391, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637930

RESUMO

Mexico is one of the most important contributors of multidrug resistance tuberculosis (MDR-TB) in Latin-America, however little is known about the molecular characteristics of these strains. For this reason, the objective of this work was to determine the genotype and characterize polymorphisms in genes associated with resistance to rifampicin, isoniazid, and second-line drugs in isolates from two regions of Mexico with high prevalence of drug resistant tuberculosis. Clinical isolates from individuals with confirmed MDR-TB were genotyped using MIRU-VNTR 12 loci. To characterize the polymorphisms in genes associated with resistance to rifampicin, isoniazid and second-line drugs; rpoB, katG, inhA, rrs, eis, gyrA, gyrB and tlyA were sequenced. 22 (41%) of the 54 MDR-TB isolates recovered were from the state of Baja California, while 32 (59%) were from Veracruz. The results show the katGS315T mutation was observed in 20% (11/54) of the isolates, while rpoBS315L was present in 33% (18/54). rrs had three polymorphisms (T1239C, ntA1401C and ntA1401G), gyrB presented no modifications, whereas gyrA showed five (S95T, F60Y, A90V, S91P and P124A), eis two (G-10A and A431G) and tlyA one (insertion at codon 67). Only 20% (11/54) of isolates were confirmed as MDR-TB by sequencing, and no mutations at any of the genes sequenced were observed in 43% (23/54) of the strains. Two isolates were recognized with the proper set of mutations like pre-XDR and one was XDR-TB. Eighteen isolates were classified as orphans and the remaining thirty-six were distributed in fourteen lineages, the most frequent were S (11%), Haarlem (9%), Ghana (9%) and LAM (7%). Out of the fourteen clusters identified, seven included unknown genotypes and nine had lineages. This is one of the most detailed analyses of genotypic characteristics and mutations associated with drug resistance to first and second-line drugs in MDR-TB isolates from Mexico. An important genetic variability and significant discrepancy between phenotypic tests and polymorphisms was observed. Our results set the need to screen additional loci as well as implement a molecular epidemiological surveillance system of MDR-TB in the country.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Análise por Conglomerados , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Variação Genética , Genótipo , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Repetições Minissatélites , Tipagem de Sequências Multilocus , Mutação , Prevalência
6.
Infect Genet Evol ; 33: 37-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891283

RESUMO

Trypanosoma cruzi and Leishmania spp. are kinetoplastids responsible for Chagas disease and Leishmaniasis, neglected tropical diseases for which there are no effective methods of control. These two human pathogens differ widely in the range of mammal species they can infect, their cell/tissue tropism and cell invasion mechanisms. Whether such major biological differences have had any impact on genome-wide patterns of genetic diversification in both pathogens has not been explored. The recent genome sequencing projects of medically important species of Leishmania and T. cruzi lineages provide unique resources for performing comparative evolutionary analyses to address that question. We show that inferred genome-wide signals of positive selection are higher in T. cruzi proteins than in Leishmania spp. proteins. We report significant differences in the fraction of protein-coding genes showing evidence of positive selection in the two groups of parasites, and also report that the intensity of positive selection and the proportion of sites under selection are higher in T. cruzi than in Leishmania spp. The pattern is unlikely to be the result of confounding factors like differences in GC content, average gene length or differences in reproductive mode between the two taxa. We propose that the greater versatility of T. cruzi in its host range, cell tropism and cell invasion mechanisms may explain the observed differences between the two groups of parasites. Genes showing evidence of positive selection within each taxonomic group may be under diversifying selection to evade the immune system and thus, depending on their functions, could represent viable candidates for the development of drugs or vaccines for these neglected human diseases.


Assuntos
Evolução Biológica , Doença de Chagas/parasitologia , Genoma de Protozoário , Interações Hospedeiro-Parasita , Seleção Genética , Trypanosoma cruzi/genética , Adaptação Biológica , Humanos , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Trypanosoma cruzi/classificação
7.
ScientificWorldJournal ; 2013: 724609, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24302868

RESUMO

The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented.


Assuntos
Culicidae/classificação , Culicidae/genética , Clima Desértico , Variação Genética/genética , Genética Populacional , Animais , América do Norte , Especificidade da Espécie
8.
Parasit Vectors ; 5: 226, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23050833

RESUMO

BACKGROUND: Trypanosoma cruzi, the agent of Chagas disease, is currently recognized as a complex of six lineages or Discrete Typing Units (DTU): TcI-TcVI. Recent studies have identified a divergent group within TcI - TcI(DOM). TcI(DOM). is associated with a significant proportion of human TcI infections in South America, largely absent from local wild mammals and vectors, yet closely related to sylvatic strains in North/Central America. Our aim was to examine hypotheses describing the origin of the TcI(DOM) genotype. We propose two possible scenarios: an emergence of TcI(DOM) in northern South America as a sister group of North American strain progenitors and dispersal among domestic transmission cycles, or an origin in North America, prior to dispersal back into South American domestic cycles. To provide further insight we undertook high resolution nuclear and mitochondrial genotyping of multiple Central American strains (from areas of México and Guatemala) and included them in an analysis with other published data. FINDINGS: Mitochondrial sequence and nuclear microsatellite data revealed a cline in genetic diversity across isolates grouped into three populations: South America, North/Central America and TcI(DOM). As such, greatest diversity was observed in South America (A(r) = 4.851, π = 0.00712) and lowest in TcI(DOM) (Ar = 1.813, π = 0.00071). Nuclear genetic clustering (genetic distance based) analyses suggest that TcI(DOM) is nested within the North/Central American clade. CONCLUSIONS: Declining genetic diversity across the populations, and corresponding hierarchical clustering suggest that emergence of this important human genotype most likely occurred in North/Central America before moving southwards. These data are consistent with early patterns of human dispersal into South America.


Assuntos
Variação Genética , Filogenia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Animais , América Central , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , Genótipo , Humanos , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA , América do Sul , Trypanosoma cruzi/isolamento & purificação
9.
PLoS Negl Trop Dis ; 5(8): e1272, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829751

RESUMO

BACKGROUND: The genetic diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, has been traditionally divided in two major groups, T. cruzi I and II, corresponding to discrete typing units TcI and TcII-VI under a recently proposed nomenclature. The two major groups of T. cruzi seem to differ in important biological characteristics, and are thus thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. To understand the potential connection between the different manifestations of Chagas disease and variability of T. cruzi strains, it is essential to have a correct reconstruction of the evolutionary history of T. cruzi. METHODOLOGY/PRINCIPAL FINDINGS: Nucleotide sequences from 32 unlinked loci (>26 Kilobases of aligned sequence) were used to reconstruct the evolutionary history of strains representing the known genetic variability of T. cruzi. Thorough phylogenetic analyses show that the original classification of T. cruzi in two major lineages does not reflect its evolutionary history and that there is only strong evidence for one major and recent hybridization event in the history of this species. Furthermore, estimates of divergence times using Bayesian methods show that current extant lineages of T. cruzi diverged very recently, within the last 3 million years, and that the major hybridization event leading to hybrid lineages TcV and TcVI occurred less than 1 million years ago, well before the contact of T. cruzi with humans in South America. CONCLUSIONS/SIGNIFICANCE: The described phylogenetic relationships among the six major genetic subdivisions of T. cruzi should serve as guidelines for targeted epidemiological and prophylaxis studies. We suggest that it is important to reconsider conclusions from previous studies that have attempted to uncover important biological differences between the two originally defined major lineages of T. cruzi especially if those conclusions were obtained from single or few strains.


Assuntos
Trypanosoma cruzi/genética , Teorema de Bayes , Doença de Chagas/parasitologia , Evolução Molecular , Especiação Genética , Variação Genética , Genômica , Humanos , Hibridização Genética , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...