Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 859(Pt 2): 160291, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410480

RESUMO

Microbial community structures are shaped by geochemical factors and their interactions with the lithosphere, hydrosphere, and atmosphere through the processes of chemical mobilisation and mineralisation. High-altitude wetlands and salt flats in the central Andes are characterised by pronounced physicochemical gradients and extreme climatic conditions, representing hotspots of microbial diversity. We here hypothesise about the existence of direct relationships between the local microbiology and the climate cyclicity variables based on meteorological and biogeochemical patterns that develop over a short time scale (five years). We have here analysed the interactions between hydrometeorological and biogeochemical variables and the microbial communities of the Salar de Huasco. These results were obtained by correlating 16S cDNA and DNA gene Illumina sequences with meteorological/satellite data collected both at monitoring stations and by remote sensing between the years 2015 and 2020. The precipitation levels and flooded areas (i.e., areas covered and/or saturated with permanent water) detected in the Salar de Huasco revealed a marked hydric cyclicity that correlated seasonally with intra-annual wet and dry seasons. Overall, at this site, wet periods occurred from December to April, and dry periods from May to November. Meteorological variables such as solar radiation, air temperature, relative humidity, wind speed, atmospheric pressure, and wind direction were well-defined, showing a potential association with the hydrogeology of the area, which is directly related to the wetlands' flooded areas. Finally, the microbial presence and potentially active microbial communities were determined through the sequencing of the 16S gene (DNA and cDNA, respectively), this were associated with climatic seasonality and spatially distributed physical and chemical heterogeneity. Other non-local inter-annual scale processes, such as El Niño-Southern Oscillation (ENSO) events, modify the physical and chemical context of the wetland, thus forming unique ecological niches in the Andean Mountains.


Assuntos
Microbiota , Áreas Alagadas , Estações do Ano , El Niño Oscilação Sul , Chile
2.
J Phycol ; 57(6): 1777-1791, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570392

RESUMO

Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase). Both kelp populations responded differently to N limitation, with M. pyrifera-south sporophytes having a lower specific growth rate (SGR) under N-limiting conditions than the northern population; M. pyrifera-north sporophytes showed no significant differences in SGR when exposed to low-N and high-N concentrations. This corresponded to a higher GluSyn-gene expression in the M. pyrifera-north sporophytes and the co-occurrence of specific nrfA bacterial taxa. These bacteria may increase ammonium availability under low-N concentrations, allowing M. pyrifera-north to optimize nutrient assimilation by increasing the expression of GluSyn. We conclude that bacteria-kelp interactions are important in enhancing kelp growth rates under low N availability, although this effect may be regulated by the genetic background of kelp populations.


Assuntos
Kelp , Macrocystis , Bactérias/genética , Nitrogênio
3.
Front Microbiol ; 8: 2561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312241

RESUMO

Macroalgae are photosynthetic, multicellular, sessile eukaryotic organisms that offer diverse habitats for the colonization of epiphytic bacteria, therefore establishing biological interactions of diverse complexity. This review focusses on the interactions between macroalgae and their Epiphytic Bacterial Community (EBC); the main aims are to ascertain whether (1) the epiphytic bacterial groups differ at the phylum and genus levels of the macroalgae; (2) the methodologies used so far to study these microorganisms are related in any way to eventual variations of the EBCs on macroalgae; and (3) the EBC of macroalgae has a functional means rather a simple taxonomic grouping. Results showed firstly the taxonomic grouping of macroalgae does not explain the composition and structure of the EBCs. Secondly, the methodology used is important for describing EBCs; and thirdly, multiple bacteria can have the same function and thus to describe the functionality of EBCs it is important to recognize host-specific and generalist bacteria. We recommend the incorporation of a complementary approach between the taxonomic composition and the functional composition analyzes of EBCs, as well as the use of methodological tools that allow analysis of interactions between the EBCs and their hosts, based on the "holobiont" concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...