Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 13: 833113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656009

RESUMO

In plants salt and water stress result in an induction of respiration and accumulation of stress-related metabolites (SRMs) with osmoregulation and osmoprotection functions that benefit photosynthesis. The synthesis of SRMs may depend on an active respiratory metabolism, which can be restricted under stress by the inhibition of the cytochrome oxidase pathway (COP), thus causing an increase in the reduction level of the ubiquinone pool. However, the activity of the alternative oxidase pathway (AOP) is thought to prevent this from occurring while at the same time, dissipates excess of reducing power from the chloroplast and thereby improves photosynthetic performance. The present research is based on the hypothesis that the accumulation of SRMs under osmotic stress will be affected by changes in folial AOP activity. To test this, the oxygen isotope-fractionation technique was used to study the in vivo respiratory activities of COP and AOP in leaves of wild-type Arabidopsis thaliana plants and of aox1a mutants under sudden acute stress conditions induced by mannitol and salt treatments. Levels of leaf primary metabolites and transcripts of respiratory-related proteins were also determined in parallel to photosynthetic analyses. The lack of in vivo AOP response in the aox1a mutants coincided with a lower leaf relative water content and a decreased accumulation of crucial osmoregulators. Additionally, levels of oxidative stress-related metabolites and transcripts encoding alternative respiratory components were increased. Coordinated changes in metabolite levels, respiratory activities and photosynthetic performance highlight the contribution of the AOP in providing flexibility to carbon metabolism for the accumulation of SRMs.

3.
Front Plant Sci ; 12: 752795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804092

RESUMO

The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.

4.
Plant Physiol ; 186(4): 2137-2151, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618102

RESUMO

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.


Assuntos
Aclimatação , Brassicaceae/fisiologia , Luz , Brassicaceae/efeitos da radiação , Especificidade da Espécie
5.
J Exp Bot ; 72(13): 4949-4964, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963398

RESUMO

In plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.


Assuntos
Tiorredoxinas de Cloroplastos , Nicotiana , Carbono/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
6.
Plants (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652808

RESUMO

Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.

7.
New Phytol ; 231(1): 255-272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590894

RESUMO

Geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) serves as a precursor for many plastidial isoprenoids, including carotenoids. Phytoene synthase (PSY) converts GGPP into phytoene, the first committed intermediate of the carotenoid pathway. Here we used biochemical, molecular, and genetic tools to characterise the plastidial members of the GGPPS family in tomato (Solanum lycopersicum) and their interaction with PSY isoforms. The three tomato GGPPS isoforms found to localise in plastids (SlG1, 2 and 3) exhibit similar kinetic parameters. Gene expression analyses showed a preferential association of individual GGPPS and PSY isoforms when carotenoid biosynthesis was induced during root mycorrhization, seedling de-etiolation and fruit ripening. SlG2, but not SlG3, physically interacts with PSY proteins. By contrast, CRISPR-Cas9 mutants defective in SlG3 showed a stronger impact on carotenoid levels and derived metabolic, physiological and developmental phenotypes compared with those impaired in SlG2. Double mutants defective in both genes could not be rescued. Our work demonstrates that the bulk of GGPP production in tomato chloroplasts and chromoplasts relies on two cooperating GGPPS paralogues, unlike other plant species such as Arabidopsis thaliana, rice or pepper, which produce their essential plastidial isoprenoids using a single GGPPS isoform.


Assuntos
Arabidopsis , Solanum lycopersicum , Carotenoides , Farnesiltranstransferase , Solanum lycopersicum/genética , Isoformas de Proteínas/genética
8.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494429

RESUMO

Salinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRXo1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two Attrxo1 mutant lines in their growth under short photoperiod and higher light intensity than previous reported works. Stomatal development and apertures and the antioxidant, hormonal and metabolic acclimation are also analyzed. In control conditions mutant plants displayed less and larger developed stomata and higher pore size which could underlie their higher stomatal conductance, without being affected in other photosynthetic parameters. Under salinity, all genotypes displayed a general decrease in photosynthesis and the oxidative status in the Attrxo1 mutant lines was altered, with higher levels of H2O2 and NO but also higher ascorbate/glutathione (ASC/GSH) redox states than WT plants. Finally, sugar changes and increases in abscisic acid (ABA) and NO may be involved in the observed higher stomatal response of the TRXo1-altered plants. Therefore, the lack of AtTRXo1 affected stomata development and opening and the mutants modulate their antioxidant, metabolic and hormonal responses to optimize their adaptation to salinity.


Assuntos
Fotossíntese , Desenvolvimento Vegetal , Estômatos de Plantas/metabolismo , Salinidade , Tiorredoxinas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Oxirredução , Fotossíntese/genética , Estômatos de Plantas/genética , Tiorredoxinas/genética
9.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817419

RESUMO

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Assuntos
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Cloroplastos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/fisiologia , Engenharia de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
10.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545597

RESUMO

The interaction of the alternative oxidase (AOX) pathway with nutrient metabolism is important for understanding how respiration modulates ATP synthesis and carbon economy in plants under nutrient deficiency. Although AOX activity reduces the energy yield of respiration, this enzymatic activity is upregulated under stress conditions to maintain the functioning of primary metabolism. The in vivo metabolic regulation of AOX activity by phosphorus (P) and nitrogen (N) and during plant symbioses with Arbuscular mycorrhizal fungi (AMF) and Rhizobium bacteria is still not fully understood. We highlight several findings and open questions concerning the in vivo regulation of AOX activity and its impact on plant metabolism during P deficiency and symbiosis with AMF. We also highlight the need for the identification of which metabolic regulatory factors of AOX activity are related to N availability and nitrogen-fixing legume-rhizobia symbiosis in order to improve our understanding of N assimilation and biological nitrogen fixation.


Assuntos
Proteínas Mitocondriais/metabolismo , Micorrizas/fisiologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Rhizobium/fisiologia , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Simbiose
11.
J Exp Bot ; 71(2): 465-469, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31559421

RESUMO

Elevated greenhouse gases (GHGs) induce adverse conditions directly and indirectly, causing decreases in plant productivity. To deal with climate change effects, plants have developed various mechanisms including the fine-tuning of metabolism. Plant respiratory metabolism is highly flexible due to the presence of various alternative pathways. The mitochondrial alternative oxidase (AOX) respiratory pathway is responsive to these changes, and several lines of evidence suggest it plays a role in reducing excesses of reactive oxygen species (ROS) and reactive nitrogen species (RNS) while providing metabolic flexibility under stress. Here we discuss the importance of the AOX pathway in dealing with elevated carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), and the main abiotic stresses induced by climate change.


Assuntos
Dióxido de Carbono/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxirredutases/metabolismo , Ozônio/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Mudança Climática , Estresse Fisiológico
12.
Plant Cell Physiol ; 60(11): 2369-2381, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31318380

RESUMO

The alternative oxidase (AOX) constitutes a nonphosphorylating pathway of electron transport in the mitochondrial respiratory chain that provides flexibility to energy and carbon primary metabolism. Its activity is regulated in vitro by the mitochondrial thioredoxin (TRX) system which reduces conserved cysteines residues of AOX. However, in vivo evidence for redox regulation of the AOX activity is still scarce. In the present study, the redox state, protein levels and in vivo activity of the AOX in parallel to photosynthetic parameters were determined in Arabidopsis knockout mutants lacking mitochondrial trxo1 under moderate (ML) and high light (HL) conditions, known to induce in vivo AOX activity. In addition, 13C- and 14C-labeling experiments together with metabolite profiling were performed to better understand the metabolic coordination between energy and carbon metabolism in the trxo1 mutants. Our results show that the in vivo AOX activity is higher in the trxo1 mutants at ML while the AOX redox state is apparently unaltered. These results suggest that mitochondrial thiol redox systems are responsible for maintaining AOX in its reduced form rather than regulating its activity in vivo. Moreover, the negative regulation of the tricarboxylic acid cycle by the TRX system is coordinated with the increased input of electrons into the AOX pathway. Under HL conditions, while AOX and photosynthesis displayed similar patterns in the mutants, photorespiration is restricted at the level of glycine decarboxylation most likely as a consequence of redox imbalance.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Oxirredução , Oxirredutases/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Proteínas de Plantas/genética
13.
Plant Cell Physiol ; 60(1): 213-229, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329109

RESUMO

Thioredoxins (Trxs) modulate metabolic responses during stress conditions; however, the mechanisms governing the responses of plants subjected to multiple drought events and the role of Trxs under these conditions are not well understood. Here we explored the significance of the mitochondrial Trx system in Arabidopsis following exposure to single and repeated drought events. We analyzed the previously characterized NADPH-dependent Trx reductase A and B double mutant (ntra ntrb) and two independent mitochondrial thioredoxin o1 (trxo1) mutant lines. Following similar reductions in relative water content (∼50%), Trx mutants subjected to two drought cycles displayed a significantly higher maximum quantum efficiency (Fv/Fm) and were less sensitive to drought than their wild-type counterparts and than all genotypes subjected to a single drought event. Trx mutant plants displayed a faster recovery after two cycles of drought, as observed by the higher accumulation of secondary metabolites and higher stomatal conductance. Our results indicate that plants exposed to multiple drought cycles are able to modulate their subsequent metabolic and physiological response, suggesting the occurrence of an exquisite acclimation in stressed Arabidopsis plants. Moreover, this differential acclimation involves the participation of a set of metabolic changes as well as redox poise alteration following stress recovery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secas , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Mutação/genética , Nucleotídeos/metabolismo , Oxirredução , Estômatos de Plantas/fisiologia , Análise de Componente Principal , Estresse Fisiológico , Água
14.
J Plant Physiol ; 231: 19-30, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212658

RESUMO

In the Mediterranean region, grapevines usually deal with drought during their summer growth season. Concurrently, grapevines are hosts to a large number of viruses from which grapevine leafroll associated virus-3 is one of the most widespread and provokes considerable economic losses in many vineyards. However, information concerning grapevine metabolic responses to the combination of drought and viral infection is scarce. Gas-chromatography coupled to mass-spectrometry based metabolite profiling was used in combination with growth analysis, viral loads and gas exchange data to perform an integrative study of the effects of individual and combined stress in two Majorcan grapevine varieties at two experimental years. Metabolic responses of both varieties to the combination of water stress and virus infection were specific and not predicted from the sum of single stress responses. Correlations between respiration, biomass and key metabolites highlight specific adjustments of respiratory and amino acid metabolism possibly underlying the maintenance of carbon balance and growth in grapevines under stress combination.


Assuntos
Respiração Celular/fisiologia , Doenças das Plantas/virologia , Vitis/metabolismo , Clorofila/metabolismo , Closteroviridae , Desidratação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/fisiologia , Vitis/virologia
15.
J Exp Bot ; 69(14): 3413-3424, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29590433

RESUMO

Mitochondria are not only major sites for energy production but also participate in several alternative functions, among these generation of nitric oxide (NO), and its different impacts on this organelle, is receiving increasing attention. The inner mitochondrial membrane contains the chain of protein complexes, and electron transfer via oxidation of various organic acids and reducing equivalents leads to generation of a proton gradient that results in energy production. Recent evidence suggests that these complexes are sources and targets for NO. Complex I and rotenone-insensitive NAD(P)H dehydrogenases regulate hypoxic NO production, while complex I also participates in the formation of a supercomplex with complex III under hypoxia. Complex II is a target for NO which, by inhibiting Fe-S centres, regulates reactive oxygen species (ROS) generation. Complex III is one of the major sites for NO production, and the produced NO participates in the phytoglobin-NO cycle that leads to the maintenance of the redox level and limited energy production under hypoxia. Expression of the alternative oxidase (AOX) is induced by NO under various stress conditions, and evidence exists that AOX can regulate mitochondrial NO production. Complex IV is another major site for NO production, which can also be linked to ATP generation via the phytoglobin-NO cycle. Inhibition of complex IV by NO can prevent oxygen depletion at the frontier of anoxia. The NO production and action on various complexes play a major role in NO signalling and energy metabolism.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Transporte de Elétrons
16.
Plant Cell Environ ; 41(4): 865-875, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29380389

RESUMO

Plants exhibit respiratory bypasses (e.g., the alternative oxidase [AOX]) and increase the synthesis of carboxylates in their organs (leaves and roots) in response to phosphorus (P) deficiency, which increases P uptake capacity. They also show differential expression of high-affinity inorganic phosphorus (Pi) transporters, thus avoiding P toxicity at a high P availability. The association between AOX and carboxylate synthesis was tested in Solanum lycopersicum plants grown at different soil P availability, by using plants grown under P-sufficient and P-limiting conditions and by applying a short-term (24 hr) P-sufficient pulse to plants grown under P limitation. Tests were also performed with plants colonized with arbuscular mycorrhizal fungi, which increased plant P concentration under reduced P availability. The in vivo activities of AOX and cytochrome oxidase were measured together with the concentration of carboxylates and the P concentration in plant organs. Gene transcription of Pi transporters (LePT1 and LePT2) was also studied. A coordinated response between plant P concentration with these traits was observed, indicating that a sufficient P availability in soil led to a suppression of both AOX activity and synthesis of citrate and a downregulation of the transcription of genes encoding high-affinity Pi transporters, presumably to avoid P toxicity.


Assuntos
Ácido Cítrico/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Micorrizas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Rizosfera
17.
Trends Plant Sci ; 23(3): 206-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269217

RESUMO

Despite intense research on the in vitro characterization of regulatory factors modulating the alternative oxidase (AOX) pathway, the regulation of its activity in vivo is still not fully understood. Advances concerning in vivo regulation of AOX based on the oxygen-isotope fractionation technique are reviewed, and regulatory factors that merit future research are highlighted. In addition, we review and discuss the main biological functions assigned to the plant AOX, and suggest future experiments involving in vivo activity measurements to test different hypothesized physiological roles.


Assuntos
Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Plantas/metabolismo , Transdução de Sinais/fisiologia
18.
Methods Mol Biol ; 1670: 203-217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871545

RESUMO

Plant respiration is characterized by the existence of the alternative oxidase pathway (AOP) that competes with cytochrome oxidase pathway (COP) for the electrons of the ubiquinone pool of the mitochondrial electron transport chain, thus reducing ATP synthesis. The oxygen (O2) isotope fractionation technique is the only available to determine the electron partitioning between the two pathways and their in vivo activities in plant tissues. In this chapter, the basis of the O2 isotope fractionation technique and its derived calculations are carefully explained together with a detailed description of the dual-inlet isotope ratio mass spectrometry (DI-IRMS) system and the protocol developed at the University of Balearic Islands. The key advantages of the DI-IRMS over other systems are highlighted as well as the potential problems of this technique. Among these problems, those associated with leakage, diffusion, and inhibitor treatments are noted and solutions to prevent, detect, and repair these problems are detailed.


Assuntos
Bioquímica/métodos , Citocromos/metabolismo , Elétrons , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Respiração Celular , Fracionamento Químico , Espectrometria de Massas , Isótopos de Oxigênio
19.
Plant Cell Environ ; 40(7): 1115-1126, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28060998

RESUMO

The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots.


Assuntos
Micorrizas/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/fisiologia , Poaceae/microbiologia , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Glomeromycota/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/microbiologia , Simbiose
20.
Plant Physiol ; 173(1): 434-455, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852950

RESUMO

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo I de Transporte de Elétrons/genética , Fotoperíodo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...