Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
J Pathol ; 263(4-5): 496-507, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934262

RESUMO

Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM2.5) and a decline in renal function. PM2.5 exerts harmful effects on various organs through oxidative stress and inflammation. Acute kidney injury (AKI) resulting from ischaemia-reperfusion injury (IRI) involves biological processes similar to those involved in PM2.5 toxicity and is a known risk factor for CKD. The objective of this study was to investigate the impact of PM2.5 exposure on IRI-induced AKI. Through a unique environmentally controlled setup, mice were exposed to urban PM2.5 or filtered air for 12 weeks before IRI followed by euthanasia 48 h after surgery. Animals exposed to PM2.5 and IRI exhibited reduced glomerular filtration, impaired urine concentration ability, and significant tubular damage. Further, PM2.5 aggravated local innate immune responses and mitochondrial dysfunction, as well as enhancing cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation. This increased renal senescence and suppressed the anti-ageing protein klotho, leading to early fibrotic changes. In vitro studies using proximal tubular epithelial cells exposed to PM2.5 and hypoxia/reoxygenation revealed heightened activation of the STING pathway triggered by cytoplasmic mitochondrial DNA, resulting in increased tubular damage and a pro-inflammatory phenotype. In summary, our findings imply a role for PM2.5 in sensitising proximal tubular epithelial cells to IRI-induced damage, suggesting a plausible association between PM2.5 exposure and heightened susceptibility to CKD in individuals experiencing AKI. Strategies aimed at reducing PM2.5 concentrations and implementing preventive measures may improve outcomes for AKI patients and mitigate the progression from AKI to CKD. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Camundongos Endogâmicos C57BL , Material Particulado , Traumatismo por Reperfusão , Animais , Injúria Renal Aguda/patologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/patologia , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Camundongos , Masculino , Poluição do Ar/efeitos adversos , Modelos Animais de Doenças , Rim/patologia , Rim/metabolismo , Transdução de Sinais , Taxa de Filtração Glomerular
2.
Nat Aging ; 4(5): 681-693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609524

RESUMO

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.


Assuntos
Envelhecimento , Exercício Físico , Músculo Esquelético , Humanos , Animais , Envelhecimento/metabolismo , Feminino , Camundongos , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Masculino , Lipidômica , Lisofosfolipídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Idoso , Metabolismo dos Lipídeos/fisiologia , Monoglicerídeos/metabolismo , Adulto , Pessoa de Meia-Idade
3.
Clin Kidney J ; 17(1): sfad299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213498

RESUMO

The N-PATH (Nephrology Partnership for Advancing Technology in Healthcare) program concluded with the 60th European Renal Association 2023 Congress in Milan, Italy. This collaborative initiative aimed to provide advanced training in interventional nephrology to young European nephrologists. Funded by Erasmus+ Knowledge Alliance, N-PATH addressed the global burden of chronic kidney disease (CKD) and the shortage of nephrologists. CKD affects >850 million people worldwide, yet nephrology struggles to attract medical talent, leading to unfilled positions in residency programs. To address this, N-PATH focused on enhancing nephrology education through four specialized modules: renal expert in renal pathology (ReMAP), renal expert in vascular access (ReVAC), renal expert in medical ultrasound (ReMUS) and renal expert in peritoneal dialysis (RePED). ReMAP emphasized the importance of kidney biopsy in nephrology diagnosis and treatment, providing theoretical knowledge and hands-on training. ReVAC centred on vascular access in haemodialysis, teaching trainees about different access types, placement techniques and managing complications. ReMUS recognized the significance of ultrasound in nephrology, promoting interdisciplinary collaboration and preparing nephrologists for comprehensive patient care. RePED addressed chronic peritoneal dialysis, offering comprehensive training in patient selection, prescription, monitoring, complications and surgical techniques for catheter insertion. Overall, N-PATH's strategy involved collaborative networks, hands-on training, mentorship, an interdisciplinary approach and the integration of emerging technologies. By bridging the gap between theoretical knowledge and practical skills, N-PATH aimed to revitalize interest in nephrology and prepare proficient nephrologists to tackle the challenges of kidney diseases. In conclusion, the N-PATH program aimed to address the shortage of nephrologists and improve the quality of nephrology care in Europe. By providing specialized training, fostering collaboration and promoting patient-centred care, N-PATH aimed to inspire future nephrology professionals to meet the growing healthcare demands related to kidney diseases and elevate the specialty's status within the medical community.

4.
Transplantation ; 108(2): 556-566, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650722

RESUMO

BACKGROUND: Evidence on the optimal maintenance of immunosuppressive regimen in kidney transplantation recipients is limited. METHODS: The Amsterdam, LEiden, GROningen trial is a randomized, multicenter, investigator-driven, noninferiority, open-label trial in de novo kidney transplant recipients, in which 2 immunosuppression minimization strategies were compared with standard immunosuppression with basiliximab, corticosteroids, tacrolimus, and mycophenolic acid. In the minimization groups, either steroids were withdrawn from day 3, or tacrolimus exposure was reduced from 6 mo after transplantation. The primary endpoint was kidney transplant function at 24 mo. RESULTS: A total of 295 participants were included in the intention-to-treat analysis. Noninferiority was shown for the primary endpoint; estimated glomerular filtration rate at 24 mo was 45.3 mL/min/1.73 m 2 in the early steroid withdrawal group, 49.0 mL/min/1.73 m 2 in the standard immunosuppression group, and 44.7 mL/min/1.73 m 2 in the tacrolimus minimization group. Participants in the early steroid withdrawal group were significantly more often treated for rejection ( P = 0.04). However, in this group, the number of participants with diabetes mellitus during follow-up and total cholesterol at 24 mo were significantly lower. CONCLUSIONS: Tacrolimus minimization can be considered in kidney transplant recipients who do not have an increased immunological risk. Before withdrawing steroids the risk of rejection should be weighed against the potential metabolic advantages.


Assuntos
Carbazóis , Transplante de Rim , Tacrolimo , Triptaminas , Humanos , Tacrolimo/efeitos adversos , Transplante de Rim/efeitos adversos , Imunossupressores/efeitos adversos , Terapia de Imunossupressão , Ácido Micofenólico/efeitos adversos , Esteroides , Rejeição de Enxerto/prevenção & controle
5.
Microbiol Spectr ; 11(6): e0302923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975661

RESUMO

IMPORTANCE: Even though the coronavirus disease 2019 (COVID-19) pandemic is slowly developing into a conventional infectious disease, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection are still not well understood. One of the problems is that many COVID-19 cases develop acute kidney injuries. Still, it is heavily debated whether SARS-CoV-2 virus enters and actively replicates in kidney tissue and if SARS-CoV-2 virus particles can be detected in kidney during or post-infection. Here, we demonstrated that nucleocapsid N protein was detected in kidney tubular epithelium of patients that already recovered form COVID-19. The presence of the abundantly produced N protein without signs of viral replication could have implications for the recurrence of kidney disease and have a continuing effect on the immune system.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas do Nucleocapsídeo , Replicação Viral , Epitélio
6.
Clin Nephrol ; 100(6): 284-289, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877298

RESUMO

Anticoagulant-related nephropathy (ARN) is a rare but important disease and often misdiagnosed. The hallmark of the diagnosis is acute kidney injury (AKI) superimposed on preexisting kidney disease due to anticoagulation-induced glomerular hemorrhage with histologic features of widespread tubular obstruction by red blood cells and red cell casts. As ARN is a diagnosis of exclusion only proven by renal biopsy, the diagnosis is often unlikely to be confirmed histologically because of fear of biopsy-related bleeding during anticoagulant therapy. Given the large differential diagnosis in AKI, diagnosing ARN remains a challenge for clinicians. A case report and the pitfalls related to diagnosis and management will be discussed in this paper.


Assuntos
Injúria Renal Aguda , Anticoagulantes , Humanos , Anticoagulantes/efeitos adversos , Rim/patologia , Glomérulos Renais/patologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/terapia , Hemorragia/induzido quimicamente , Hemorragia/diagnóstico , Hemorragia/terapia
7.
Eur J Immunol ; 53(11): e2350562, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597325

RESUMO

Levamisole (LMS) is a small molecule used in the treatment of idiopathic nephrotic syndrome (INS). The pathogenesis of INS remains unknown, but evidence points toward an immunological basis of the disease. Recently, LMS has been shown to increase the relapse-free survival in INS patients. While LMS has been hypothesized to exert an immunomodulatory effect, its mechanism of action remains unknown. Here, we show that LMS decreased activation and proliferation of human T cells. T-cell activation-associated cytokines such as IL-2, TNF-α, and IFN-γ were reduced upon LMS treatment, whereas IL-4 and IL-13 were increased. Gene expression profiling confirmed that the suppressive effects of LMS as genes involved in cell cycle progression were downregulated. Furthermore, genes associated with p53 activation were upregulated by LMS. In agreement, LMS treatment resulted in p53 phosphorylation and increased expression of the p53 target gene FAS. Accordingly, LMS sensitized activated T cells for Fas-mediated apoptosis. LMS treatment resulted in a mid-S phase cell cycle arrest accompanied by γH2AX-foci formation and phosphorylation of CHK1. Our findings indicate that LMS acts as an immunosuppressive drug that directly affects the activation and proliferation of human T cells by induction of DNA damage and the activation of a p53-dependent DNA damage response.


Assuntos
Levamisol , Proteína Supressora de Tumor p53 , Humanos , Levamisol/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Divisão Celular , Apoptose , Linfócitos T , Dano ao DNA
8.
Transpl Int ; 36: 11410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470063

RESUMO

The ESOT TLJ 3.0. consensus conference brought together leading experts in transplantation to develop evidence-based guidance on the standardization and clinical utility of pre-implantation kidney biopsy in the assessment of grafts from Expanded Criteria Donors (ECD). Seven themes were selected and underwent in-depth analysis after formulation of PICO (patient/population, intervention, comparison, outcomes) questions. After literature search, the statements for each key question were produced, rated according the GRADE approach [Quality of evidence: High (A), Moderate (B), Low (C); Strength of Recommendation: Strong (1), Weak (2)]. The statements were subsequently presented in-person at the Prague kick-off meeting, discussed and voted. After two rounds of discussion and voting, all 7 statements reached an overall agreement of 100% on the following issues: needle core/wedge/punch technique representatively [B,1], frozen/paraffin embedded section reliability [B,2], experienced/non-experienced on-call renal pathologist reproducibility/accuracy of the histological report [A,1], glomerulosclerosis/other parameters reproducibility [C,2], digital pathology/light microscopy in the measurement of histological variables [A,1], special stainings/Haematoxylin and Eosin alone comparison [A,1], glomerulosclerosis reliability versus other histological parameters to predict the graft survival, graft function, primary non-function [B,1]. This methodology has allowed to reach a full consensus among European experts on important technical topics regarding pre-implantation biopsy in the ECD graft assessment.


Assuntos
Transplante de Rim , Transplante de Órgãos , Humanos , Transplante de Rim/métodos , Reprodutibilidade dos Testes , Rim/patologia , Biópsia , Doadores de Tecidos , Sobrevivência de Enxerto
9.
Pediatr Nephrol ; 38(11): 3681-3692, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37191940

RESUMO

BACKGROUND: The aetiology of idiopathic nephrotic syndrome (INS) remains partially unknown. Viral infections have been associated with INS onset. Since we observed fewer first onset INS cases during the Covid-19 pandemic, we hypothesised that lower INS incidence was the result of lockdown measures. Therefore, the aim of this study was to evaluate the incidence of childhood INS before and during the COVID-19 pandemic in two independent European INS cohorts. METHODS: Children with new INS in the Netherlands (2018-2021) and Paris area (2018-2021) were included. We estimated incidences using census data for each region. Incidences were compared using two proportion Z-tests. RESULTS: A total of 128 and 324 cases of first onset INS were reported in the Netherlands and Paris area, respectively, corresponding to an annual incidence of 1.21 and 2.58 per 100,000 children/year. Boys and young children (< 7 years) were more frequently affected. Incidence before and during the pandemic did not differ. When schools were closed, incidence was lower in both regions: 0.53 vs. 1.31 (p = 0.017) in the Netherlands and 0.94 vs. 2.63 (p = 0.049) in the Paris area. During peaks of hospital admissions for Covid-19, no cases were reported in the Netherlands or Paris area. CONCLUSIONS: Incidence of INS before and during the Covid-19 pandemic was not different, but when schools were closed during lockdown, incidence was significantly lower. Interestingly, incidences of other respiratory viral infections were also reduced as was air pollution. Together, these results argue for a link between INS onset and viral infections and/or environmental factors. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
COVID-19 , Nefrose Lipoide , Síndrome Nefrótica , Criança , Masculino , Humanos , Pré-Escolar , Síndrome Nefrótica/epidemiologia , Síndrome Nefrótica/complicações , COVID-19/epidemiologia , COVID-19/complicações , Incidência , Paris/epidemiologia , Países Baixos/epidemiologia , Controle de Doenças Transmissíveis , Nefrose Lipoide/complicações , França
10.
J Pathol ; 259(2): 149-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373978

RESUMO

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/patologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais , Glicólise
12.
Cells ; 13(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201227

RESUMO

BACKGROUND: Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism. The specific impact of NLRX1 on macrophages and its involvement in renal fibrosis is not fully understood. METHODS: To explore the specific role of NLRX1 in macrophages, bone-marrow-derived macrophages (BMDMs) extracted from wild-type (WT) and NLRX1 knockout (KO) mice were stimulated with pro-inflammatory and pro-fibrotic factors to induce M1 and M2 polarization in vitro. The expression levels of macrophage polarization markers (Nos2, Mgl1, Arg1, and Mrc1), as well as the secretion of transforming growth factor ß (TGFß), were measured using RT-PCR and ELISA. Seahorse-based bioenergetics analysis was used to assess mitochondrial respiration in naïve and polarized BMDMs obtained from WT and NLRX1 KO mice. In vivo, WT and NLRX1 KO mice were subjected to unilateral ureter obstruction (UUO) surgery to induce renal fibrosis. Kidney injury, macrophage phenotypic profile, and fibrosis markers were assessed using RT-PCR. Histological staining (PASD and Sirius red) was used to quantify kidney injury and fibrosis. RESULTS: Compared to the WT group, an increased gene expression of M2 markers-including Mgl1 and Mrc1-and enhanced TGFß secretion were found in naïve BMDMs extracted from NLRX1 KO mice, indicating functional polarization towards the pro-fibrotic M2 subtype. NLRX1 KO naïve macrophages also showed a significantly enhanced oxygen consumption rate compared to WT cells and increased basal respiration and maximal respiration capacities that equal the level of M2-polarized macrophages. In vivo, we found that NLRX1 KO mice presented enhanced M2 polarization markers together with enhanced tubular injury and fibrosis demonstrated by augmented TGFß levels, fibronectin, and collagen accumulation. CONCLUSIONS: Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.


Assuntos
Insuficiência Renal Crônica , Animais , Camundongos , Macrófagos , Genes Reguladores , Fibrose , Fator de Crescimento Transformador beta , Proteínas Mitocondriais
13.
Antimicrob Agents Chemother ; 66(9): e0229821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35972289

RESUMO

Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 µmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Estafilocócica , Pró-Fármacos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Citocinas , Inflamação/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico , Pneumonia Estafilocócica/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
14.
Nat Rev Nephrol ; 18(9): 588-603, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798902

RESUMO

Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.


Assuntos
Injúria Renal Aguda , Túbulos Renais , Injúria Renal Aguda/etiologia , Apoptose , Células Epiteliais , Humanos , Túbulos Renais/metabolismo
16.
J Innate Immun ; : 1-15, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35537415

RESUMO

Humans with dysfunctional Bruton's tyrosine kinase (Btk) are highly susceptible to bacterial infections. Compelling evidence indicates that Btk is essential for B cell-mediated immunity, whereas its role in myeloid cell-mediated immunity against infections is controversial. In this study, we determined the contribution of Btk in B cells and neutrophils to host defense against the extracellular bacterial pathogen Klebsiella pneumoniae, a common cause of pulmonary infections and sepsis. Btk-/- mice were highly susceptible to Klebsiella infection, which was not reversed by Btk re-expression in B cells and restoration of natural antibody levels. Neutrophil-specific Btk deficiency impaired host defense against Klebsiella to a similar extent as complete Btk deficiency. Neutrophil-specific Btk deficiency abolished extracellular reactive oxygen species production in response to Klebsiella. These data indicate that expression of Btk in neutrophils is crucial, while in B cells, it is dispensable for in vivo host defense against K. pneumoniae.

18.
J Allergy Clin Immunol ; 149(3): 1120-1127.e8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34416217

RESUMO

BACKGROUND: Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option. OBJECTIVE: Our aim was to report the case of a young boy with a treatment-resistant cutaneous vasculitis that was initially suspected to be associated with a gene variant in SH2D1A. METHODS: Whole-exome sequencing was performed to identify the genetic defect. Molecular and functional analyses were performed to assess the impact of variants on proteasomal function. The immune characterization led to the decision to perform HSCT on our patient and conduct follow-up over the 7-year period after the transplant. Because loss of myeloid chimerism after the first HSCT was associated with relapse of autoinflammation, a second HSCT was performed. RESULTS: After the successful second HSCT, the patient developed mild symptoms of lipodystrophy, which raised the suspicion of a PRAAS. Genetic analysis revealed 2 novel heterozygous variants in PSMB4 (encoding proteasomal subunit ß7). Retrospective analysis of patient cells stored before the first HSCT and patient cells obtained after the second HSCT demonstrated that HSCT successfully rescued proteasome function, restored protein homeostasis, and resolved the interferon-stimulated gene signature. Furthermore, successful HSCT alleviated the autoinflammatory manifestations in our patient. CONCLUSION: Patients with treatment-resistant PRAAS can be cured by HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Lipodistrofia , Criança , Humanos , Lipodistrofia/genética , Masculino , Complexo de Endopeptidases do Proteassoma/genética , Estudos Retrospectivos , Síndrome
19.
Lancet Digit Health ; 4(1): e18-e26, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794930

RESUMO

BACKGROUND: Histopathological assessment of transplant biopsies is currently the standard method to diagnose allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, requiring considerable expertise, time, and effort. We aimed to analyse the utility of deep learning to preclassify histology of kidney allograft biopsies into three main broad categories (ie, normal, rejection, and other diseases) as a potential biopsy triage system focusing on transplant rejection. METHODS: We performed a retrospective, multicentre, proof-of-concept study using 5844 digital whole slide images of kidney allograft biopsies from 1948 patients. Kidney allograft biopsy samples were identified by a database search in the Departments of Pathology of the Amsterdam UMC, Amsterdam, Netherlands (1130 patients) and the University Medical Center Utrecht, Utrecht, Netherlands (717 patients). 101 consecutive kidney transplant biopsies were identified in the archive of the Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany. Convolutional neural networks (CNNs) were trained to classify allograft biopsies as normal, rejection, or other diseases. Three times cross-validation (1847 patients) and deployment on an external real-world cohort (101 patients) were used for validation. Area under the receiver operating characteristic curve (AUROC) was used as the main performance metric (the primary endpoint to assess CNN performance). FINDINGS: Serial CNNs, first classifying kidney allograft biopsies as normal (AUROC 0·87 [ten times bootstrapped CI 0·85-0·88]) and disease (0·87 [0·86-0·88]), followed by a second CNN classifying biopsies classified as disease into rejection (0·75 [0·73-0·76]) and other diseases (0·75 [0·72-0·77]), showed similar AUROC in cross-validation and deployment on independent real-world data (first CNN normal AUROC 0·83 [0·80-0·85], disease 0·83 [0·73-0·91]; second CNN rejection 0·61 [0·51-0·70], other diseases 0·61 [0·50-0·74]). A single CNN classifying biopsies as normal, rejection, or other diseases showed similar performance in cross-validation (normal AUROC 0·80 [0·73-0·84], rejection 0·76 [0·66-0·80], other diseases 0·50 [0·36-0·57]) and generalised well for normal and rejection classes in the real-world data. Visualisation techniques highlighted rejection-relevant areas of biopsies in the tubulointerstitium. INTERPRETATION: This study showed that deep learning-based classification of transplant biopsies could support pathological diagnostics of kidney allograft rejection. FUNDING: European Research Council; German Research Foundation; German Federal Ministries of Education and Research, Health, and Economic Affairs and Energy; Dutch Kidney Foundation; Human(e) AI Research Priority Area of the University of Amsterdam; and Max-Eder Programme of German Cancer Aid.


Assuntos
Aprendizado Profundo , Rejeição de Enxerto/diagnóstico , Transplante de Rim/classificação , Biópsia , Humanos , Estudo de Prova de Conceito , Estudos Retrospectivos
20.
Front Immunol ; 12: 723967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552589

RESUMO

Bruton's tyrosine kinase (Btk) is a cytoplasmic kinase expressed in B cells and myeloid cells. It is essential for B cell development and natural antibody-mediated host defense against bacteria in humans and mice, but little is known about the role of Btk in innate host defense in vivo. Previous studies have indicated that lack of (natural) antibodies is paramount for impaired host defense against Streptococcus (S.) pneumoniae in patients and mice with a deficiency in functional Btk. In the present study, we re-examined the role of Btk in B cells and myeloid cells during pneumococcal pneumonia and sepsis in mice. The antibacterial defense of Btk-/- mice was severely impaired during pneumococcal pneumosepsis and restoration of natural antibody production in Btk-/- mice by transgenic expression of Btk specifically in B cells did not suffice to protect against infection. Btk-/- mice with reinforced Btk expression in MhcII+ cells, including B cells, dendritic cells and macrophages, showed improved antibacterial defense as compared to Btk-/- mice. Bacterial outgrowth in Lysmcre-Btkfl/Y mice was unaltered despite a reduced capacity of Btk-deficient alveolar macrophages to respond to pneumococci. Mrp8cre-Btkfl/Y mice with a neutrophil specific paucity in Btk expression, however, demonstrated impaired antibacterial defense. Neutrophils of Mrp8cre-Btkfl/Y mice displayed reduced release of granule content after pulmonary installation of lipoteichoic acid, a gram-positive bacterial cell wall component relevant for pneumococci. Moreover, Btk deficient neutrophils showed impaired degranulation and phagocytosis upon incubation with pneumococci ex vivo. Taken together, the results of our study indicate that besides regulating B cell-mediated immunity, Btk is critical for regulation of myeloid cell-mediated, and particularly neutrophil-mediated, innate host defense against S. pneumoniae in vivo.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Imunidade Inata , Células Mieloides/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Sepse/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Pneumonia Pneumocócica/genética , Transdução de Sinais , Streptococcus pneumoniae/fisiologia , Ácidos Teicoicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...