Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1362878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708030

RESUMO

Rhamnolipids (RLs) are highly valuable molecules in the cosmetic, pharmaceutic, and agricultural sectors with outstanding biosurfactant properties. In agriculture, due to their potential to artificially stimulate the natural immune system of crops (also known as elicitation), they could represent a critical substitute to conventional pesticides. However, their current synthesis methods are complex and not aligned with green chemistry principles, posing a challenge for their industrial applications. In addition, their bioproduction is cumbersome with reproducibility issues and expensive downstream processing. This work offers a more straightforward and green access to RLs, crucial to decipher their mechanisms of action and design novel potent and eco-friendly elicitors. To achieve this, we propose an efficient seven-step synthetic pathway toward (R)-3-hydroxyfatty acid chains present in RLs, starting from cellulose-derived levoglucosenone, with Michael addition, Baeyer-Villiger oxidation, Bernet-Vasella reaction, and cross-metathesis homologation as key steps. This method allowed the production of (R)-3-hydroxyfatty acid chains and derivatives with an overall yield ranging from 24% to 36%.

2.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570772

RESUMO

One trend in agriculture is the replacement of classical pesticides with more ecofriendly solutions, such as elicitation, which is a promising approach consisting of stimulating the natural immune system of a plant to improve its resistance to pathogens. In this fashion, a library of p-coumaric-based compounds were synthesized in accordance with as many principles of green chemistry as possible. Then, these molecules were tested for (1) the direct inhibition of mycelium growth of two pathogens, Botrytis cinerea and Sclerotinia sclerotiorum, and (2) plasma membrane destabilization in Arabidopsis and rapeseed. Finally, the protective effect was evaluated on an Arabidopsis/B. cinerea pathosystem. Total inhibition of the growth of both fungi could be achieved, and significant ion leakage was observed using dihydroxylated fatty p-coumarate esters. A direct effect on plants was also recorded as a ca. three-fold reduction in the necrosis area.


Assuntos
Antifúngicos , Arabidopsis , Antifúngicos/química , Arabidopsis/metabolismo , Plantas/microbiologia , Membrana Celular , Botrytis , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
Food Chem ; 410: 135395, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696781

RESUMO

Ferulic acid displays poor thermal resistance during extrusion and compression moulding, slow 2,2-diphenyl-1-picrylhydrazyl (DPPH) reaction kinetics, and undetected release from polylactide (PLA) and polyhydroxyalkanoates (PHA)-based films into polar media. Thus, in this study, a ferulic acid derivative Bis-O-dihydroferuloyl-1,4-butanediol (BDF) was used as an active additive (up to 40 w%) in PLA, poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrices to produce blends by extrusion. These blends were then used to prepare films by solvent casting. The BDF displayed good stability with 86-93% retention. The release kinetics in Food Simulant A revealed higher BDF release amounts (1.16-3.2%) for PHA-based films as compared to PLA. The BDF displayed faster DPPH reaction kinetics as compared to ferulic acid. The PHA-based films containing BDF displayed > 80% of DPPH inhibition. The growth of crystals inside polymer matrix had a nucleation effect which reduced the glass transition temperature of the films.


Assuntos
Antioxidantes , Poli-Hidroxialcanoatos , Cinética , Poliésteres/química , Poli-Hidroxialcanoatos/química
4.
Commun Chem ; 5(1): 141, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697608

RESUMO

Sinapate esters have been extensively studied for their potential application in 'nature-inspired' photoprotection. There is general consensus that the relaxation mechanism of sinapate esters following photoexcitation with ultraviolet radiation is mediated by geometric isomerization. This has been largely inferred through indirect studies involving transient electronic absorption spectroscopy in conjunction with steady-state spectroscopies. However, to-date, there is no direct experimental evidence tracking the formation of the photoisomer in real-time. Using transient vibrational absorption spectroscopy, we report on the direct structural changes that occur upon photoexcitation, resulting in the photoisomer formation. Our mechanistic analysis predicts that, from the photoprepared ππ* state, internal conversion takes place through a conical intersection (CI) near the geometry of the initial isomer. Our calculations suggest that different CI topographies at relevant points on the seam of intersection may influence the isomerization yield. Altogether, we provide compelling evidence suggesting that a sinapate ester's geometric isomerization can be a more complex dynamical process than originally thought.

5.
Macromol Rapid Commun ; 42(19): e2100284, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347323

RESUMO

The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,ß-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,ß-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Glucose/análogos & derivados , Substâncias Macromoleculares , Polimerização
6.
Molecules ; 26(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401641

RESUMO

The aim of this paper is to study the effect of the pH on the extraction of sinapic acid and its derivatives from mustard seed meal. Solutions of acidic pH (pH 2), basic pH (pH 12) and distilled water (uncontrolled pH ~ 4.5) were tested at different percentages of ethanol. The maximum extraction yield for sinapic acid (13.22 µmol/g of dry matter (DM)) was obtained with a buffered aqueous solution at pH 12. For ethyl sinapate, the maximum extraction yield reached 9.81 µmol/g DM with 70% ethanol/buffered aqueous solution at pH 12. The maximum extraction yield of sinapine (15.73 µmol/g DM) was achieved with 70% ethanol/buffered aqueous solution at pH 2. The antioxidant activity of each extract was assessed by DPPH assay; the results indicated that the extracts obtained at pH 12 and at low ethanol percentages (<50%) exhibit a higher antioxidant activity than extracts obtained at acidic conditions. Maximum antioxidant activity was reached at pH 12 with buffer solution (11.37 mg of Trolox Equivalent/g DM), which confirms that sinapic acid-rich fractions exhibit a higher antioxidant activity. Thus, to obtain rich antioxidant extracts, it is suggested to promote the presence of sinapic acid in the extracts.


Assuntos
Antioxidantes , Ácidos Cumáricos , Mostardeira/química , Extratos Vegetais/química , Sementes/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Concentração de Íons de Hidrogênio
7.
ChemSusChem ; 14(1): 118-129, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33058548

RESUMO

p-Hydroxycinnamic acids (i. e., p-coumaric, ferulic, sinapic, and caffeic acids) are phenolic compounds involved in the biosynthesis pathway of lignin. These naturally occurring molecules not only exhibit numerous attractive properties, such as antioxidant, anti-UV, and anticancer activities, but they also have been used as building blocks for the synthesis of tailored monomers and functional additives for the food/feed, cosmetic, and plastics sectors. Despite their numerous high value-added applications, the sourcing of p-hydroxycinnamic acids is not ensured at the industrial scale except for ferulic acid, and their production cost remains too high for commodity applications. These compounds can be either chemically synthesized or extracted from lignocellulosic biomass, and recently their production through bioconversion emerged. Herein the different strategies described in the literature to produce these valuable molecules are discussed.


Assuntos
Ácidos Cumáricos/síntese química , Ácidos Cumáricos/economia , Ácidos Cumáricos/isolamento & purificação , Benzaldeídos/química , Biomassa , Escherichia coli/química , Escherichia coli/genética , Micro-Ondas , Estrutura Molecular , Fenilalanina/biossíntese , Fenilalanina/química , Extratos Vegetais/química , Plantas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Tirosina/biossíntese , Tirosina/química
8.
Front Chem ; 8: 633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850651

RESUMO

The photochemistry and photostability of a potential ultraviolet (UV) radiation filter, dehydrodiethylsinapate, with a broad absorption in the UVA region, is explored utilizing a combination of femtosecond time-resolved spectroscopy and steady-state irradiation studies. The time-resolved measurements show that this UV filter candidate undergoes excited state relaxation after UV absorption on a timescale of ~10 picoseconds, suggesting efficient relaxation. However, steady-state irradiation measurements show degradation under prolonged UV exposure. From a photochemical standpoint, this highlights the importance of considering both the ultrafast and "ultraslow" timescales when designing new potential UV filters.

9.
Chemphyschem ; 21(17): 2006-2011, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32638475

RESUMO

Sinapoyl malate is a natural plant sunscreen molecule which protects leaves from harmful ultraviolet radiation. Here, the ultrafast dynamics of three sinapoyl malate derivatives, sinapoyl L-dimethyl malate, sinapoyl L-diethyl malate and sinapoyl L-di-t-butyl malate, have been studied using transient electronic absorption spectroscopy, in a dioxane and methanol solvent environment to investigate how well preserved these dynamics remain with increasing molecular complexity. In all cases it was found that, upon photoexcitation, deactivation occurs via a trans-cis isomerisation pathway within ∼20-30 ps. This cis-photoproduct, formed during photodeactivation, is stable and longed-lived for all molecules in both solvents. The incredible levels of conservation of the isomerisation pathway with increased molecular complexity demonstrate the efficacy of these molecules as ultraviolet photoprotectors, even in strongly perturbing solvents. As such, we suggest these molecules might be well-suited for augmentations to further improve their photoprotective efficacy or chemical compatibility with other components of sunscreen mixtures, whilst conserving their underlying photodynamic properties.

10.
Front Chem ; 7: 842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921767

RESUMO

To investigate lignin degradation, scientists commonly use model compounds. Unfortunately, these models are most of the time simple ß-O-4 dimers and do not sufficiently mimic the wide complexity of lignin structure (i.e., aliphatic side chains and robust C-C bonds). Herein, we present a methodology to access advanced lignin models through the first synthesis of two trimers of monolignol G-possessing side-chains and both robust ß-5 bond and labile ß-O-4 bond-via a chemo-enzymatic pathway. Key steps were (1) the C-C coupling via laccase-mediated oxidation, (2) the C-O coupling via a simple SN2 between a phenolate and a bromoketoester, and (3) a modified Upjohn dihydroxylation or a palladium-catalyzed hydrogenation. (ß-5)-(ß-O-4) dihydroxytrimer and dihydrotrimer of coniferyl alcohol (G) were obtained in good global yield, 9 and 20%, respectively, over nine steps starting from ferulic acid.

11.
J Phys Chem Lett ; 8(5): 1025-1030, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28177249

RESUMO

Sunscreens are aimed at protecting skin from solar ultraviolet (UV) irradiation. By utilizing femtosecond transient absorption spectroscopy and time-dependent density functional theory, we explain nature's selection of sinapoyl malate rather than sinapic acid as the plant sunscreen molecule. In physiological pH conditions, the two molecules are deprotonated, and their excited ππ* states are found to relax to the ground states in a few tens of picoseconds via a barrierless trans-cis photoisomerization. After the cis-photoproduct is formed, the efficacy of sinapic acid is greatly reduced. In contrast, the efficacy of sinapoyl malate is affected only slightly because the cis-product still absorbs UV light strongly. In addition, protonated sinapic acid is found to be a good potential sunscreen molecule.

12.
Molecules ; 21(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27483225

RESUMO

Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos de Epóxi , Glucose/análogos & derivados , Lactonas/química , Propionatos , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Glucose/química , Propionatos/síntese química , Propionatos/química
13.
Front Chem ; 4: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148523

RESUMO

Cellulose-derived levoglucosenone (LGO) has been efficiently converted into pure (S)-γ-hydroxymethyl-α,ß-butenolide (HBO), a chemical platform suited for the synthesis of drugs, flavors and antiviral agents. This process involves two-steps: a lipase-catalyzed Baeyer-Villiger oxidation of LGO followed by an acid hydrolysis of the reaction mixture to provide pure HBO. Response surface methodology (RSM), based on central composite face-centered (CCF) design, was employed to evaluate the factors effecting the enzyme-catalyzed reaction: pka of solid buffer (7.2-9.6), LGO concentration (0.5-1 M) and enzyme loading (55-285 PLU.mmol(-1)). Enzyme loading and pka of solid buffer were found to be important factors to the reaction efficiency (as measured by the conversion of LGO) while only the later had significant effects on the enzyme recyclability (as measured by the enzyme residual activity). LGO concentration influences both responses by its interaction with the enzyme loading and pka of solid buffer. The optimal conditions which allow to convert at least 80% of LGO in 2 h at 40°C and reuse the enzyme for a subsequent cycle were found to be: solid buffer pka = 7.5, [LGO] = 0.50 M and 113 PLU.mmol(-1) for the lipase. A good agreement between experimental and predicted values was obtained and the model validity confirmed (p < 0.05). Alternative optimal conditions were explored using Monte Carlo simulations for risk analysis, being estimated the experimental region where the LGO conversion higher than 80% is fulfilled at a specific risk of failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...