Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Neurol ; 21(7): 645-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716694

RESUMO

Huntington's disease is the most frequent autosomal dominant neurodegenerative disorder; however, no disease-modifying interventions are available for patients with this disease. The molecular pathogenesis of Huntington's disease is complex, with toxicity that arises from full-length expanded huntingtin and N-terminal fragments of huntingtin, which are both prone to misfolding due to proteolysis; aberrant intron-1 splicing of the HTT gene; and somatic expansion of the CAG repeat in the HTT gene. Potential interventions for Huntington's disease include therapies targeting huntingtin DNA and RNA, clearance of huntingtin protein, DNA repair pathways, and other treatment strategies targeting inflammation and cell replacement. The early termination of trials of the antisense oligonucleotide tominersen suggest that it is time to reflect on lessons learned, where the field stands now, and the challenges and opportunities for the future.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/terapia , Oligonucleotídeos , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA
2.
Nat Rev Neurol ; 16(10): 529-546, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32796930

RESUMO

Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.


Assuntos
Estudo de Associação Genômica Ampla/tendências , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/terapia , Mutação/genética , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Ensaios Clínicos como Assunto/métodos , Reparo do DNA/genética , Terapia Genética/métodos , Terapia Genética/tendências , Estudo de Associação Genômica Ampla/métodos , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo
3.
Curr Opin Neurol ; 33(4): 508-518, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32657893

RESUMO

PURPOSE OF REVIEW: Huntington's disease is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide expansion in the HTT gene, and current therapies focus on symptomatic treatment. This review explores therapeutic approaches that directly target the pathogenic mutation, disrupt HTT mRNA or its translation. RECENT FINDINGS: Zinc-finger transcription repressors and CRISPR-Cas9 therapies target HTT DNA, thereby preventing all downstream pathogenic mechanisms. These therapies, together with RNA interference (RNAi), require intraparenchymal delivery to the brain in viral vectors, with only a single delivery potentially required, though they may carry the risk of irreversible side-effects.Along with RNAi, antisense oligonucleotides (ASOs) target mRNA, but are delivered periodically and intrathecally. ASOs have safely decreased mutant huntingtin protein (mHTT) levels in the central nervous system of patients, and a phase 3 clinical trial is currently underway.Finally, orally available small molecules, acting on splicing or posttranslational modification, have recently been shown to decrease mHTT in animal models. SUMMARY: Huntingtin-lowering approaches act upstream of pathogenic mechanisms and therefore have a high a priori likelihood of modifying disease course. ASOs are already in late-stage clinical development, whereas other strategies are progressing rapidly toward human studies.


Assuntos
Terapia Genética/métodos , Proteína Huntingtina/genética , Doença de Huntington/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Encéfalo/patologia , Vetores Genéticos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia
4.
Nat Genet ; 52(2): 136-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060488

Assuntos
DNA
5.
EBioMedicine ; 48: 568-580, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31607598

RESUMO

BACKGROUND: Huntington disease (HD) is caused by an unstable CAG/CAA repeat expansion encoding a toxic polyglutamine tract. Here, we tested the hypotheses that HD outcomes are impacted by somatic expansion of, and polymorphisms within, the HTT CAG/CAA glutamine-encoding repeat, and DNA repair genes. METHODS: The sequence of the glutamine-encoding repeat and the proportion of somatic CAG expansions in blood DNA from participants inheriting 40 to 50 CAG repeats within the TRACK-HD and Enroll-HD cohorts were determined using high-throughput ultra-deep-sequencing. Candidate gene polymorphisms were genotyped using kompetitive allele-specific PCR (KASP). Genotypic associations were assessed using time-to-event and regression analyses. FINDINGS: Using data from 203 TRACK-HD and 531 Enroll-HD participants, we show that individuals with higher blood DNA somatic CAG repeat expansion scores have worse HD outcomes: a one-unit increase in somatic expansion score was associated with a Cox hazard ratio for motor onset of 3·05 (95% CI = 1·94 to 4·80, p = 1·3 × 10-6). We also show that individual-specific somatic expansion scores are associated with variants in FAN1 (pFDR = 4·8 × 10-6), MLH3 (pFDR = 8·0 × 10-4), MLH1 (pFDR = 0·004) and MSH3 (pFDR = 0·009). We also show that HD outcomes are best predicted by the number of pure CAGs rather than total encoded-glutamines. INTERPRETATION: These data establish pure CAG length, rather than encoded-glutamine, as the key inherited determinant of downstream pathophysiology. These findings have implications for HD diagnostics, and support somatic expansion as a mechanistic link for genetic modifiers of clinical outcomes, a driver of disease, and potential therapeutic target in HD and related repeat expansion disorders. FUNDING: CHDI Foundation.


Assuntos
Reparo do DNA , Predisposição Genética para Doença , Proteína Huntingtina/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Éxons , Feminino , Genótipo , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
6.
Sci Rep ; 7: 44849, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322270

RESUMO

There is widespread transcriptional dysregulation in Huntington's disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer's disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches.


Assuntos
Doença de Alzheimer/etiologia , Encéfalo/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/etiologia , Imunidade/genética , Transcriptoma , Adulto , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA