Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 28(18): 2410-2419, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701347

RESUMO

During female meiosis, haploid eggs are generated from diploid oocytes. This reduction in chromosome number occurs through two highly asymmetric cell divisions, resulting in one large egg and two small polar bodies. Unlike mitosis, where an actomyosin contractile ring forms between the sets of segregating chromosomes, the meiotic contractile ring forms on the cortex adjacent to one spindle pole, then ingresses down the length of the spindle to position itself at the exact midpoint between the two sets of segregating chromosomes. Depletion of casein kinase 1 gamma (CSNK-1) in Caenorhabditis elegans led to the formation of large polar bodies that contain all maternal DNA, because the contractile ring ingressed past the spindle midpoint. Depletion of CSNK-1 also resulted in the formation of deep membrane invaginations during meiosis, suggesting an effect on cortical myosin. Both myosin and anillin assemble into dynamic rho-dependent cortical patches that rapidly disassemble in wild-type embryos. CSNK-1 was required for disassembly of both myosin patches and anillin patches. Disassembly of anillin patches was myosin independent, suggesting that CSNK-1 prevents expulsion of the entire meiotic spindle into a polar body by negatively regulating the rho pathway rather than through direct inhibition of myosin.


Assuntos
Caseína Quinase I/metabolismo , Fuso Acromático/metabolismo , Actinas/metabolismo , Animais , Divisão Celular Assimétrica , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Cromossomos/metabolismo , Proteínas Contráteis/metabolismo , Citocinese , Feminino , Meiose/fisiologia , Mitose , Miosinas/metabolismo , Oócitos/metabolismo , Corpos Polares/metabolismo , Corpos Polares/fisiologia
2.
J Vis ; 17(8): 6, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28672372

RESUMO

Estimation of perceptual variables is imprecise and prone to errors. Although the properties of these perceptual errors are well characterized, the physiological basis for these errors is unknown. One previously proposed explanation for these errors is the trial-by-trial variability of the responses of sensory neurons that encode the percept. In order to test this hypothesis, we developed a mathematical formalism that allows us to find the statistical characteristics of the physiological system responsible for perceptual errors, as well as the time scale over which the visual information is integrated. Crucially, these characteristics can be estimated solely from a behavioral experiment performed here. We demonstrate that the physiological basis of perceptual error has a constant level of noise (i.e., independent of stimulus intensity and duration). By comparing these results to previous physiological measurements, we show that perceptual errors cannot be due to the variability during the encoding stage. We also find that the time window over which perceptual evidence is integrated lasts no more than ∼230 ms. Finally, we discuss sources of error that may be consistent with our behavioral measurements.


Assuntos
Sensibilidades de Contraste/fisiologia , Transtornos da Percepção/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Percepção Visual/fisiologia , Teorema de Bayes , Humanos , Modelos Teóricos
3.
Mol Biol Cell ; 26(17): 3030-46, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26133383

RESUMO

Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin.


Assuntos
Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/citologia , Forma Celular/fisiologia , Complexo Dinactina , Feminino , Meiose/fisiologia , Microtúbulos/metabolismo , Oócitos/citologia , Rotação , Análise Espaço-Temporal , Estatística como Assunto
4.
Dev Cell ; 22(4): 788-98, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22465668

RESUMO

Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism.


Assuntos
Caenorhabditis elegans/metabolismo , Centríolos/metabolismo , Centrossomo/fisiologia , Cinesinas/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Espermatozoides/fisiologia , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Células Cultivadas , Embrião não Mamífero , Feminino , Fertilização , Imunofluorescência , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Masculino , Oócitos/citologia , Oogênese/fisiologia , Espermatozoides/citologia , Fuso Acromático/fisiologia
5.
Dev Biol ; 359(1): 137-148, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21889938

RESUMO

Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole.


Assuntos
Caenorhabditis elegans/embriologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Fosfoproteínas/fisiologia , Animais , Ciclo Celular , Miosinas/fisiologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA