Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39329750

RESUMO

An essential aspect of harnessing the potential of pluripotent stem cells (PSCs) and their derivatives for regenerative medicine is the development of animal-free and chemically defined conditions for ex vivo cultivation. PSCs, including embryonic and induced PSCs (iPSCs), are in the early stages of clinical trials for various indications, including degenerative diseases and traumatic injury. A key step in the workflows generating these cells for more widespread clinical use is their safe and robust ex vivo cultivation. This entails optimization of cell culture media and substrates that are safe and consistent while maintaining robust functionality. Here, we describe the design of a human vitronectin (hVTN) variant with improved manufacturability in a bacterial expression system along with improved function in comparison to wild-type VTN and other previously characterized polypeptide fragments. In conjunction with an animal component-free media formulation, our hVTN fragment provides animal-free conditions for the enhanced expansion of iPSCs. This hVTN variant also supports the reprogramming of PBMCs into iPSCs. Furthermore, we show that these iPSCs can be efficiently differentiated into the three major germ layers and cortical neurons, thereby closing the loop on a completely defined animal-free workflow for cell types relevant for regenerative medicine.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Proteínas Recombinantes , Vitronectina , Vitronectina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Recombinantes/farmacologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Proliferação de Células , Reprogramação Celular/genética , Fluxo de Trabalho , Camundongos
2.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31400829

RESUMO

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Cofilina 1/genética , Cofilina 2/genética , Destrina/genética , Cones de Crescimento/patologia , Regeneração Nervosa/genética , Traumatismos da Medula Espinal/genética , Animais , Axônios/patologia , Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Cones de Crescimento/metabolismo , Microscopia Intravital , Camundongos , Microscopia Confocal , Neurônios/metabolismo , Neurônios/patologia , Ratos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Imagem com Lapso de Tempo
3.
PLoS Genet ; 11(3): e1005063, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803043

RESUMO

Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types.


Assuntos
Actinas/metabolismo , Citoesqueleto/genética , Glucosilceramidas/genética , Metabolismo dos Lipídeos/genética , beta-Glucosidase/genética , Actinas/química , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Fibroblastos/metabolismo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Pseudópodes/genética , Pseudópodes/metabolismo , Pseudópodes/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , beta-Glucosidase/metabolismo
4.
Science ; 348(6232): 347-52, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25765066

RESUMO

After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.


Assuntos
Axônios/efeitos dos fármacos , Cicatriz/prevenção & controle , Epotilonas/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Moduladores de Tubulina/administração & dosagem , Animais , Axônios/fisiologia , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Cicatriz/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Meninges/efeitos dos fármacos , Meninges/patologia , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
5.
Bioarchitecture ; 3(4): 86-109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24002528

RESUMO

Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis­neuritogenesis.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Animais , Humanos , Morfogênese , Neurônios/citologia
6.
Neuron ; 76(6): 1091-107, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23259946

RESUMO

Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Forma Celular/fisiologia , Córtex Cerebral/embriologia , Destrina/fisiologia , Cones de Crescimento/metabolismo , Neuritos/metabolismo , Animais , Transporte Biológico , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Hipocampo/citologia , Hipocampo/embriologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microtúbulos/fisiologia , Neurogênese/fisiologia
7.
Science ; 331(6019): 928-31, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21273450

RESUMO

Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-ß signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.


Assuntos
Axônios/fisiologia , Cicatriz/prevenção & controle , Microtúbulos/metabolismo , Paclitaxel/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal , Animais , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cicatriz/patologia , Feminino , Gânglios Espinais/citologia , Cinesinas/metabolismo , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais , Proteína Smad2/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
8.
Dev Neurobiol ; 70(8): 565-88, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506164

RESUMO

Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Quimiotaxia/fisiologia , Cones de Crescimento/fisiologia , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Proteínas de Anfíbios/metabolismo , Animais , Proteínas Aviárias/metabolismo , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Espaço Extracelular/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/fisiologia , Técnicas In Vitro , Netrina-1 , Fosforilação , Multimerização Proteica , Neurônios Retinianos/fisiologia , Medula Espinal/embriologia , Medula Espinal/fisiologia , Xenopus laevis
9.
J Neurosci ; 30(20): 6930-43, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20484635

RESUMO

Neuronal migration and axon growth, key events during neuronal development, require distinct changes in the cytoskeleton. Although many molecular regulators of polarity have been identified and characterized, relatively little is known about their physiological role in this process. To study the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex to the plasma membrane to enable actin remodeling necessary for axon growth.


Assuntos
Movimento Celular/fisiologia , Neurônios/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Bromodesoxiuridina/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cofilina 1/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Antígeno Ki-67/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , Transfecção/métodos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/deficiência , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Dev Neurobiol ; 69(12): 761-79, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19513994

RESUMO

Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone-like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in nonwave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP-actin and photoconversion of Dendra-actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics.


Assuntos
Axônios/fisiologia , Cones de Crescimento/fisiologia , Neuritos/fisiologia , Neurônios/citologia , Actinas/metabolismo , Animais , Transporte Axonal/fisiologia , Axônios/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Técnicas de Transferência de Genes , Cones de Crescimento/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Neuritos/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Ratos
12.
J Alzheimers Dis ; 18(1): 35-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19542631

RESUMO

Dissociated hippocampal neurons exposed to a variety of degenerative stimuli form neuritic cofilin-actin rods. Here we report on stimulus driven regional rod formation in organotypic hippocampal slices. Ultrastructural analysis of rods formed in slices demonstrates mitochondria and vesicles become entrapped within some rods. We developed a template for combining and mapping data from multiple slices, enabling statistical analysis for the identification of vulnerable sub-regions. Amyloid-beta (Abeta) induces rods predominantly in the dentate gyrus region, and Abeta-induced rods are reversible following washout. Rods that persist 24 h following transient (30 min) ATP-depletion are broadly distributed, whereas rods formed in response to excitotoxic glutamate localize within and nearby the pyramidal neurons. Time-lapse imaging of cofilin-GFP-expressing neurons within slices shows neuronal rod formation begins rapidly and peaks by 10 min of anoxia. In approximately 50% of responding neurons, Abeta-induced rod formation acts via cdc42, an upstream regulator of cofilin. These new observations support a role for cofilin-actin rods in stress-induced disruption of cargo transport and synaptic function within hippocampal neurons and suggest both cdc42-dependent and independent pathways modulate cofilin activity downstream from Abeta.


Assuntos
Actinas/ultraestrutura , Peptídeos beta-Amiloides/toxicidade , Mapeamento Encefálico/métodos , Cofilina 1/ultraestrutura , Hipocampo/ultraestrutura , Proteína cdc42 de Ligação ao GTP/fisiologia , Actinas/fisiologia , Animais , Galinhas , Cofilina 1/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Cultura de Órgãos , Gravidez , Coelhos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Estresse Fisiológico , Sinapses/metabolismo , Sinapses/ultraestrutura
13.
Nat Rev Neurosci ; 9(2): 136-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18209731

RESUMO

Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Diferenciação Celular/fisiologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Cones de Crescimento/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular/fisiologia , Sistema Nervoso Central/citologia , Cones de Crescimento/ultraestrutura , Humanos , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia
14.
J Neurosci ; 27(48): 13117-29, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18045906

RESUMO

The establishment of polarity is an essential process in early neuronal development. Although a number of molecules controlling neuronal polarity have been identified, genetic evidence about their physiological roles in this process is mostly lacking. We analyzed the consequences of loss of Cdc42, a central regulator of polarity in multiple systems, on the polarization of mammalian neurons. Genetic ablation of Cdc42 in the brain led to multiple abnormalities, including striking defects in the formation of axonal tracts. Neurons from the Cdc42 null animals sprouted neurites but had a strongly suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating that the effects of Cdc42 ablation are exerted through modulation of actin dynamics. In addition, the knock-outs showed a specific increase in the phosphorylation (inactivation) of the Cdc42 effector cofilin. Furthermore, the active, nonphosphorylated form of cofilin was enriched in the axonal growth cones of wild-type, but not of mutant, neurons. Importantly, cofilin knockdown resulted in polarity defects quantitatively analogous to the ones seen after Cdc42 ablation. We conclude that Cdc42 is a key regulator of axon specification, and that cofilin is a physiological downstream effector of Cdc42 in this process.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Neurônios/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Actinas/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/fisiologia , Axônios/fisiologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Fosforilação , Interferência de RNA/fisiologia , Proteína cdc42 de Ligação ao GTP/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA