Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 453-458, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662833

RESUMO

Governments recently adopted new global targets to halt and reverse the loss of biodiversity. It is therefore crucial to understand the outcomes of conservation actions. We conducted a global meta-analysis of 186 studies (including 665 trials) that measured biodiversity over time and compared outcomes under conservation action with a suitable counterfactual of no action. We find that in two-thirds of cases, conservation either improved the state of biodiversity or at least slowed declines. Specifically, we find that interventions targeted at species and ecosystems, such as invasive species control, habitat loss reduction and restoration, protected areas, and sustainable management, are highly effective and have large effect sizes. This provides the strongest evidence to date that conservation actions are successful but require transformational scaling up to meet global targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Espécies Introduzidas , Animais , Ecossistema
2.
Conserv Biol ; : e14227, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111977

RESUMO

The International Union for Conservation of Nature (IUCN) Red List is a central tool for extinction risk monitoring and influences global biodiversity policy and action. But, to be effective, it is crucial that it consistently accounts for each driver of extinction. Climate change is rapidly becoming a key extinction driver, but consideration of climate change information remains challenging for the IUCN. Several methods can be used to predict species' future decline, but they often fail to provide estimates of the symptoms of endangerment used by IUCN. We devised a standardized method to measure climate change impact in terms of change in habitat quality to inform criterion A3 on future population reduction. Using terrestrial nonvolant tetrapods as a case study, we measured this impact as the difference between the current and the future species climatic niche, defined based on current and future bioclimatic variables under alternative model algorithms, dispersal scenarios, emission scenarios, and climate models. Our models identified 171 species (13% out of those analyzed) for which their current red-list category could worsen under criterion A3 if they cannot disperse beyond their current range in the future. Categories for 14 species (1.5%) could worsen if maximum dispersal is possible. Although ours is a simulation exercise and not a formal red-list assessment, our results suggest that considering climate change impacts may reduce misclassification and strengthen consistency and comprehensiveness of IUCN Red List assessments.


Una estrategia estándar para incluir las respuestas al cambio climático en las evaluaciones de la Lista Roja de la UICN Resumen La Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) es una herramienta central para el monitoreo del riesgo de extinción e influye sobre las acciones y políticas para la biodiversidad. Para que esta herramienta sea efectiva, es crucial que tenga en cuenta de manera regular cada factor de extinción. El cambio climático se está convirtiendo rápidamente en un factor de extinción importante, pero considerar información sobre este factor todavía es un reto para la UICN. Se pueden usar varios métodos para predecir la declinación de una especie en el futuro, pero generalmente fallan en proporcionar estimaciones de los síntomas del peligro usados por la UICN. Diseñamos un método estandarizado para medir el impacto del cambio climático en términos del cambio en la calidad del hábitat para informar el criterio A3 sobre la reducción futura de las poblaciones. Usamos a los tetrápodos terrestres no voladores como estudio de caso para medir este impacto como la diferencia entre el nicho climático actual y futuro de las especies, definido con base en las variables bioclimáticas actuales y futuras con algoritmos de modelos alternativos, escenarios de dispersión y emisión y modelos climáticos. Nuestros modelos identificaron 171 especies (13% de las especies analizadas) para las que su categoría actual en la lista roja podría empeorar bajo el criterio A3 si no logran dispersarse más allá de su distribución actual en el futuro. Las categorías para 14 especies (1.5%) podrían empeorar si es posible la dispersión máxima. Aunque realizamos una simulación y no una evaluación formal para listas rojas, nuestros resultados sugieren que considerar los impactos del cambio climático podría reducir la clasificación incorrecta y fortalecer la coherencia y exhaustividad de las evaluaciones de la Lista Roja de la UICN.

3.
J Exp Bot ; 73(22): 7434-7449, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36066187

RESUMO

Aloidendron dichotomum appears to be undergoing the early stages of a range shift in response to anthropogenic climate change in south-western Africa. High mortality has been recorded in warmer populations, while population expansions have been recorded in cooler poleward parts of its range. This study aimed to determine the key environmental controls on A. dichotomum photosynthesis in areas of population expansion, to inform the potential attribution of directional population expansion to anthropogenic warming. Nocturnal acid accumulation and CO2 assimilation were measured in individuals growing under a range of temperature and watering treatments in a greenhouse experiment. In addition, nocturnal acid accumulation and phosphoenolpyruvate carboxylase activity were quantified in two wild populations at the most southerly and south-easterly range extents. Multiple lines of evidence confirmed that A. dichotomum performs Crassulacean acid metabolism. Total nocturnal acid accumulation was highest at night-time temperatures of ~21.5 °C, regardless of soil water availability, and night-time CO2 assimilation rates increased with leaf temperature, suggesting a causal link to the cool southern range limit. Leaf acidity at the start of the dark period was highly predictive of nocturnal acid accumulation in all individuals, implicating light availability during the day as an important determinant of nocturnal acid accumulation.


Assuntos
Árvores , África do Sul
4.
Conserv Biol ; 36(5): e13941, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35648687

RESUMO

Climate change is challenging the ability of protected areas (PAs) to meet their objectives. To improve PA planning, we developed a framework for assessing PA vulnerability to climate change based on consideration of potential climate change impacts on species and their habitats and resource use. Furthermore, the capacity of PAs to adapt to these climate threats was determined through assessment of PA management effectiveness, adjacent land use, and financial resilience. Users reach a PA-specific vulnerability score and rank based on scoring of these categories. We applied the framework to South Africa's 19 national parks. Because the 19 parks are managed as a national network, we explored how resources might be best allocated to address climate change. Each park's importance to the network's biodiversity conservation and revenue generation was estimated and used to weight overall vulnerability scores and ranks. Park vulnerability profiles showed distinct combinations of potential impacts of climate change and adaptive capacities; the former had a greater influence on vulnerability. Mapungubwe National Park emerged as the most vulnerable to climate change, despite its relatively high adaptive capacity, largely owing to large projected changes in species and resource use. Table Mountain National Park scored the lowest in overall vulnerability. Climate change vulnerability rankings differed markedly once importance weightings were applied; Kruger National Park was the most vulnerable under both importance scenarios. Climate change vulnerability assessment is fundamental to effective adaptation planning. Our PA assessment tool is the only tool that quantifies PA vulnerability to climate change in a comparative index. It may be used in data-rich and data-poor contexts to prioritize resource allocation across PA networks and can be applied from local to global scales.


Resumen El cambio climático es un gran obstáculo para que las áreas protegidas (AP) logren sus objetivos. Para mejorar la planeación de las AP, desarrollamos un marco de trabajo para evaluar la vulnerabilidad de estas ante el cambio climático con base en la consideración de los impactos potenciales del cambio climático sobre las especies, sus hábitats y los recursos que usan. Además, determinamos la capacidad de las AP para adaptarse a estas amenazas climáticas mediante la valoración de las categorías efectividad de la gestión de las AP, las tierras adyacentes y la resiliencia económica. Los usuarios logran un puntaje y clasificación de vulnerabilidad específicas de la AP con base en las calificaciones de estas categorías. Aplicamos el marco de trabajo a los 19 parques nacionales de Sudáfrica. Ya que todos los parques se manejan como una red nacional, exploramos cómo pueden asignarse de mejor manera los recursos para lidiar con el cambio climático. Se estimaron la importancia de cada parque para la conservación de la biodiversidad de la red y la generación de ganancias. Después usamos las estimaciones para sopesar los puntajes y las clasificaciones generales de vulnerabilidad. Los perfiles de vulnerabilidad de los parques mostraron combinaciones distintivas de impactos potenciales del cambio climático y capacidades de adaptación; los impactos tuvieron una mayor influencia sobre la vulnerabilidad. El Parque Nacional Mapungubwe se ubicó como el más vulnerable ante el cambio climático, a pesar de tener una capacidad de adaptación relativamente alta, principalmente debida a grandes cambios proyectados para el uso de recursos y especies. El Parque Nacional Table Mountain tuvo el puntaje más bajo de vulnerabilidad generalizada. Las clasificaciones de vulnerabilidad al cambio climático difirieron notablemente una vez que se aplicaron los factores de importancia; el Parque Nacional Kruger fue el más vulnerable bajo ambos escenarios de importancia. La evaluación de vulnerabilidad al cambio climático es fundamental para la planeación efectiva de la adaptación. Nuestra herramienta de valoración de las AP es la única que cuantifica la vulnerabilidad de las AP al cambio climático en un índice comparativo. Puede usarse en contextos con muchos o pocos datos para priorizar la asignación de recursos en las redes de AP y puede aplicarse desde la escala local hasta la mundial.


Assuntos
Mudança Climática , Parques Recreativos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , África do Sul
5.
Sci Adv ; 5(11): eaaz0414, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807712

RESUMO

A key feature of life's diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth's plant biodiversity that are rare. A large fraction, ~36.5% of Earth's ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth's plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


Assuntos
Biodiversidade , Mudança Climática , Embriófitas , Espécies em Perigo de Extinção , Extinção Biológica , Embriófitas/classificação , Embriófitas/crescimento & desenvolvimento
6.
Trends Ecol Evol ; 34(11): 977-986, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31324345

RESUMO

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species includes assessment of extinction risk for 98 512 species, plus documentation of their range, habitat, elevation, and other factors. These range, habitat and elevation data can be matched with terrestrial land cover and elevation datasets to map the species' area of habitat (AOH; also known as extent of suitable habitat; ESH). This differs from the two spatial metrics used for assessing extinction risk in the IUCN Red List criteria: extent of occurrence (EOO) and area of occupancy (AOO). AOH can guide conservation, for example, through targeting areas for field surveys, assessing proportions of species' habitat within protected areas, and monitoring habitat loss and fragmentation. We recommend that IUCN Red List assessments document AOH wherever practical.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Ecossistema , Espécies em Perigo de Extinção
7.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904135

RESUMO

Mitigation of anthropogenic climate change involves deployments of renewable energy worldwide, including wind farms, which can pose a significant collision risk to volant animals. Most studies into the collision risk between species and wind turbines, however, have taken place in industrialized countries. Potential effects for many locations and species therefore remain unclear. To redress this gap, we conducted a systematic literature review of recorded collisions between birds and bats and wind turbines within developed countries. We related collision rate to species-level traits and turbine characteristics to quantify the potential vulnerability of 9538 bird and 888 bat species globally. Avian collision rate was affected by migratory strategy, dispersal distance and habitat associations, and bat collision rates were influenced by dispersal distance. For birds and bats, larger turbine capacity (megawatts) increased collision rates; however, deploying a smaller number of large turbines with greater energy output reduced total collision risk per unit energy output, although bat mortality increased again with the largest turbines. Areas with high concentrations of vulnerable species were also identified, including migration corridors. Our results can therefore guide wind farm design and location to reduce the risk of large-scale animal mortality. This is the first quantitative global assessment of the relative collision vulnerability of species groups with wind turbines, providing valuable guidance for minimizing potentially serious negative impacts on biodiversity.


Assuntos
Aves , Quirópteros , Mortalidade , Centrais Elétricas , Energia Renovável , Vento , Distribuição Animal , Migração Animal , Animais , Mudança Climática , Ecossistema
8.
Conserv Biol ; 31(5): 1008-1017, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28225163

RESUMO

We examine issues to consider when reframing conservation science and practice in the context of global change. New framings of the links between ecosystems and society are emerging that are changing peoples' values and expectations of nature, resulting in plural perspectives on conservation. Reframing conservation for global change can thus be regarded as a stage in the evolving relationship between people and nature rather than some recent trend. New models of how conservation links with transformative adaptation include how decision contexts for conservation can be reframed and integrated with an adaptation pathways approach to create new options for global-change-ready conservation. New relationships for conservation science and governance include coproduction of knowledge that supports social learning. New processes for implementing adaptation for conservation outcomes include deliberate practices used to develop new strategies, shift world views, work with conflict, address power and intergenerational equity in decisions, and build consciousness and creativity that empower agents to act. We argue that reframing conservation for global change requires scientists and practitioners to implement approaches unconstrained by discipline and sectoral boundaries, geopolitical polarities, or technical problematization. We consider a stronger focus on inclusive creation of knowledge and the interaction of this knowledge with societal values and rules is likely to result in conservation science and practice that meets the challenges of a postnormal world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos
9.
Science ; 354(6313)2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27846577

RESUMO

Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.


Assuntos
Aclimatação , Biodiversidade , Mudança Climática , Variação Genética , Animais , Produtos Agrícolas/genética , Pesqueiros , Cadeia Alimentar , Água Doce , Humanos , Dinâmica Populacional , Razão de Masculinidade
10.
Proc Biol Sci ; 282(1818): 20151561, 2015 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511054

RESUMO

Despite increasing concerns about the vulnerability of species' populations to climate change, there has been little overall synthesis of how individual population responses to variation in climate differ between taxa, with trophic level or geographically. To address this, we extracted data from 132 long-term (greater than or equal to 20 years) studies of population responses to temperature and precipitation covering 236 animal and plant species across terrestrial and freshwater habitats. Our results identify likely geographical differences in the effects of climate change on populations and communities in line with macroecological theory. Temperature tended to have a greater overall impact on populations than precipitation, although the effects of increased precipitation varied strongly with latitude, being most positive at low latitudes. Population responses to increased temperature were generally positive, but did not vary significantly with latitude. Studies reporting significant climatic trends through time tended to show more negative effects of temperature and more positive effects of precipitation upon populations than other studies, indicating climate change has already impacted many populations. Most studies of climate change impacts on biodiversity have focused on temperature and are from middle to high northern latitudes. Our results suggest their findings may be less applicable to low latitudes.


Assuntos
Biodiversidade , Mudança Climática , Chuva , Temperatura , Animais , Ecossistema , Geografia , Plantas , Dinâmica Populacional
11.
J Biogeogr ; 41(4): 724-735, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25505356

RESUMO

AIM: Climate change can lead to decreased climatic suitability within species' distributions, increased fragmentation of climatically suitable space, and/or emergence of newly suitable areas outside present distributions. Each of these extrinsic threats and opportunities potentially interacts with specific intrinsic traits of species, yet this specificity is seldom considered in risk assessments. We present an analytical framework for examining projections of climate change-induced threats and opportunities with reference to traits that are likely to mediate species' responses, and illustrate the applicability of the framework. LOCATION: Sub-Saharan Africa. METHODS: We applied the framework to 195 sub-Saharan African amphibians with both available bioclimatic envelope model projections for the mid-21st century and trait data. Excluded were 500 narrow-ranging species mainly from montane areas. For each of projected losses, increased fragmentation and gains of climate space, we selected potential response-mediating traits and examined the spatial overlap with vulnerability due to these traits. We examined the overlap for all species, and individually for groups of species with different combinations of threats and opportunities. RESULTS: In the Congo Basin and arid Southern Africa, projected losses for wide-ranging amphibians were compounded by sensitivity to climatic variation, and expected gains were precluded by poor dispersal ability. The spatial overlap between exposure and vulnerability was more pronounced for species projected to have their climate space contracting in situ or shifting to distant geographical areas. Our results exclude the potential exposure of narrow-ranging species to shrinking climates in the African tropical mountains. MAIN CONCLUSIONS: We illustrate the application of a framework combining spatial projections of climate change exposure with traits that are likely to mediate species' responses. Although the proposed framework carries several assumptions that require further scrutiny, its application adds a degree of realism to familiar assessments that consider all species to be equally affected by climate change-induced threats and opportunities.

12.
Glob Chang Biol ; 20(7): 2221-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24677405

RESUMO

Shifts in species' distribution and abundance in response to climate change have been well documented, but the underpinning processes are still poorly understood. We present the results of a systematic literature review and meta-analysis investigating the frequency and importance of different mechanisms by which climate has impacted natural populations. Most studies were from temperate latitudes of North America and Europe; almost half investigated bird populations. We found significantly greater support for indirect, biotic mechanisms than direct, abiotic mechanisms as mediators of the impact of climate on populations. In addition, biotic effects tended to have greater support than abiotic factors in studies of species from higher trophic levels. For primary consumers, the impact of climate was equally mediated by biotic and abiotic mechanisms, whereas for higher level consumers the mechanisms were most frequently biotic, such as predation or food availability. Biotic mechanisms were more frequently supported in studies that reported a directional trend in climate than in studies with no such climatic change, although sample sizes for this comparison were small. We call for more mechanistic studies of climate change impacts on populations, particularly in tropical systems.


Assuntos
Biota , Mudança Climática , Animais , Aves/fisiologia , Europa (Continente) , Peixes/fisiologia , Invertebrados/fisiologia , Mamíferos/fisiologia , América do Norte , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional
13.
PLoS One ; 8(6): e65427, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950785

RESUMO

Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.


Assuntos
Anfíbios/fisiologia , Antozoários/fisiologia , Aves/fisiologia , Mudança Climática , Aclimatação , Animais , Biodiversidade , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...