Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5546, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684239

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Imunoterapia , Encéfalo , Mama , Membrana Celular , Modelos Animais de Doenças
2.
Cell Rep Med ; 3(3): 100543, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35492880

RESUMO

CAR-T cell therapy has been heralded as a breakthrough in the field of immunotherapy, but to date, this success has been limited to hematological malignancies. By harnessing the chemokine system and taking into consideration the chemokine expression profile in the tumor microenvironment, CAR-T cells may be homed into tumors to facilitate direct tumor cell cytolysis and overcome a major hurdle in generating effective CAR-T cell responses to solid cancers.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Quimiocinas , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral
3.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289156

RESUMO

Current immunotherapies involving CD8+ T cell responses show remarkable promise, but their efficacy in many solid tumors is limited, in part due to the low frequency of tumor-specific T cells in the tumor microenvironment (TME). Here, we identified a role for host atypical chemokine receptor 4 (ACKR4) in controlling intratumor T cell accumulation and activation. In the absence of ACKR4, an increase in intratumor CD8+ T cells inhibited tumor growth, and nonhematopoietic ACKR4 expression was critical. We show that ACKR4 inhibited CD103+ dendritic cell retention in tumors through regulation of the intratumor abundance of CCL21. In addition, preclinical studies indicate that ACKR4 and CCL21 are potential therapeutic targets to enhance responsiveness to immune checkpoint blockade or T cell costimulation.


Assuntos
Quimiocina CCL21/metabolismo , Imunidade , Neoplasias/imunologia , Receptores CCR/metabolismo , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Cadeias alfa de Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/genética , Células Estromais/metabolismo , Análise de Sobrevida
4.
Immunol Cell Biol ; 96(4): 347-357, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377354

RESUMO

Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.


Assuntos
Células-Tronco Adultas/transplante , Autoimunidade , Encéfalo/patologia , Inflamação/imunologia , Inflamação/terapia , Células-Tronco Mesenquimais/citologia , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
5.
Adv Immunol ; 135: 119-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28826528

RESUMO

CD4+ T cells are critical regulators of the adaptive immune system and have diverse roles in regulating responses to the broad array of microbes encountered. Appropriate execution of their effector function requires precise and coordinated migration of these cells to specific lymphoid niches and peripheral sites. This migration is largely controlled by dynamic expression of chemokine receptors and the discrete functions of distinct subsets of CD4+ T cells can often be determined from their expression of specific chemokine receptors. In this chapter, we discuss recent advances in the subset-specific homing of distinct T helper populations, focusing on new insights stemming from the increased diversity and plasticity now observed among CD4+ T cells as well as how chemokine receptors can govern T cell-fate decisions. We also discuss current understanding of CD4+ memory T cells with reference to their diversification based on chemokine receptor expression.


Assuntos
Infecções Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular/imunologia , Quimiocinas/imunologia , Receptores de Quimiocinas/imunologia , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Linfócitos T CD4-Positivos/microbiologia , Quimiocinas/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , Receptores de Quimiocinas/genética , Transdução de Sinais , Subpopulações de Linfócitos T/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...