Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(11)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999512

RESUMO

The precise mechanisms underlying the cardiovascular complications due to acute kidney injury (AKI) and the retention of uremic toxins like p-cresyl sulfate (PCS) remain incompletely understood. The objective of this study was to evaluate the renocardiac effects of PCS administration in animals subjected to AKI induced by ischemia and reperfusion (IR) injury. C57BL6 mice were subjected to distinct protocols: (i) administration with PCS (20, 40, or 60 mg/L/day) for 15 days and (ii) AKI due to unilateral IR injury associated with PCS administration for 15 days. The 20 mg/L dose of PCS led to a decrease in renal mass, an increase in the gene expression of Cystatin C and kidney injury molecule 1 (KIM-1), and a decrease in the α-actin in the heart. During AKI, PCS increased the renal injury biomarkers compared to control; however, it did not exacerbate these markers. Furthermore, PCS did not enhance the cardiac hypertrophy observed after 15 days of IR. An increase, but not potentialized, in the cardiac levels of interleukin (IL)-1ß and IL-6 in the IR group treated with PCS, as well as in the injured kidney, was also noticed. In short, PCS administration did not intensify kidney injury, inflammation, and cardiac outcomes after AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Camundongos , Sulfatos , Camundongos Endogâmicos C57BL , Rim , Isquemia/complicações , Traumatismo por Reperfusão/complicações
2.
Front Physiol ; 12: 686249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054588

RESUMO

The kidneys and heart share functions with the common goal of maintaining homeostasis. When kidney injury occurs, many compounds, the so-called "uremic retention solutes" or "uremic toxins," accumulate in the circulation targeting other tissues. The accumulation of uremic toxins such as p-cresyl sulfate, indoxyl sulfate and inorganic phosphate leads to a loss of a substantial number of body functions. Although the concept of uremic toxins is dated to the 1960s, the molecular mechanisms capable of leading to renal and cardiovascular injuries are not yet known. Besides, the greatest toxic effects appear to be induced by compounds that are difficult to remove by dialysis. Considering the close relationship between renal and cardiovascular functions, an understanding of the mechanisms involved in the production, clearance and overall impact of uremic toxins is extremely relevant for the understanding of pathologies of the cardiovascular system. Thus, the present study has as main focus to present an extensive review on the impact of uremic toxins in the cardiovascular system, bringing the state of the art on the subject as well as clinical implications related to patient's therapy affected by chronic kidney disease, which represents high mortality of patients with cardiac comorbidities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...