Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gay Lesbian Soc Serv ; 36(1): 58-79, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650676

RESUMO

Young Black gay, bisexual, and other men who have sex with men (YB-GBMSM) are disproportionately impacted by HIV. Structural influences on these disparities, including characteristics of the various organizations that serve YB-GBMSM living with HIV, remain understudied. We drew on Weick's model of organizing to conduct and analyze qualitative interviews with 28 HIV service providers representing healthcare and community-based organizations in Atlanta, Georgia. Enactment of HIV service provision was described as following simplified and standardized responses-defined as "rules", and/or more dynamic exchanges to formulate responses -otherwise known as "communication behavior cycles" (CBCs). Rules, including patient quotas and limited hours of operation, were viewed as rigid, out-of-touch, and inhibiting engagement with YB-GBMSM. CBCs, such as patient feedback loops and rejection of traditional hierarchies, fostered creative insights to combating the epidemic and increased levels of cultural awareness and community buy-in. Organizations should strive to enact CBCs, to foster culturally congruent approaches to service delivery for YB-GBMSM.

2.
Rev Fish Biol Fish ; 32(1): 231-251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33814734

RESUMO

One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.

3.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34566277

RESUMO

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

4.
Ambio ; 48(12): 1498-1515, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31098878

RESUMO

While governments and natural resource managers grapple with how to respond to climatic changes, many marine-dependent individuals, organisations and user-groups in fast-changing regions of the world are already adjusting their behaviour to accommodate these. However, we have little information on the nature of these autonomous adaptations that are being initiated by resource user-groups. The east coast of Tasmania, Australia, is one of the world's fastest warming marine regions with extensive climate-driven changes in biodiversity already observed. We present and compare examples of autonomous adaptations from marine users of the region to provide insights into factors that may have constrained or facilitated the available range of autonomous adaptation options and discuss potential interactions with governmental planned adaptations. We aim to support effective adaptation by identifying the suite of changes that marine users are making largely without government or management intervention, i.e. autonomous adaptations, to better understand these and their potential interactions with formal adaptation strategies.


Assuntos
Biodiversidade , Ecossistema , Austrália , Clima , Mudança Climática , Humanos
5.
Glob Chang Biol ; 23(5): 2047-2057, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122146

RESUMO

Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Clima , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...