Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(3): 1519-1531, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31553818

RESUMO

Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record-breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2 more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf-out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2 from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf-out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land-cover types to understand how landscape carbon exchange will change under projected climate warming.


Assuntos
Ecossistema , Poaceae , Carbono , Ciclo do Carbono , Mudança Climática , Florestas , New Hampshire , Estações do Ano
2.
J Anim Ecol ; 86(6): 1298-1307, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28857202

RESUMO

Dispersers are often not a random draw from a population, dispersal propensity being conditional on individual phenotypic traits and local contexts. This non-randomness consequently results in phenotypic differences between dispersers and non-dispersers and, in the context of biological invasions, in an invasion front made of individuals with a biased phenotype. This bias of phenotypes at the front may subsequently modulate the strength of ecological effects of an invasive species on invaded communities. We recently demonstrated that more asocial mosquitofish (Gambusia affinis), one of the 100 worst invasive species, disperse further, suggesting a sociability-biased invasion front. As behavioural types are related to the strength of interspecific interactions, an invasion by a biased subset of individuals should have important ecological implications for native communities. Here, we tested the impact of phenotypic biases in dispersing individuals (relative to non-dispersers) on prey communities in experimental mesocosms. We show that dispersers reduce prey abundance more than do non-dispersers during the first 4 weeks after introduction, and that the disperser's social types are likely drivers of these differences. These differences in prey communities disappeared after 8 weeks suggesting prey community resilience against predation in these mesocosm ecosystems. Consequently, we call for the integration of non-random dispersal, dispersal syndromes and more generally intraspecific variation into studies predicting the impacts of invasions.


Assuntos
Distribuição Animal , Ciprinodontiformes/fisiologia , Cadeia Alimentar , Espécies Introduzidas , Invertebrados/fisiologia , Fenótipo , Animais , Biota , Feminino , Masculino , Personalidade , Comportamento Social
3.
J Anim Ecol ; 86(2): 213-226, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27859289

RESUMO

Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment.


Assuntos
Heterópteros/fisiologia , Preferência de Acasalamento Animal , Fenótipo , Animais , Feminino , Masculino , Personalidade , Reprodução , Comportamento Social
4.
J Anim Ecol ; 85(1): 125-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26332682

RESUMO

Understanding patterns of non-random mating is central to predicting the consequences of sexual selection. Most studies quantifying assortative mating focus on testing for correlations among partners' phenotypes in mated pairs. Few studies have distinguished between assortative mating arising from preferences for similar partners (expressed by all or a subset of the population) vs. from phenotypic segregation in the environment. Also, few studies have assessed the robustness of assortative mating against temporal changes in social conditions. We tracked multiple matings by stream water striders (Aquarius remigis) across variable social conditions to investigate mating patterns by both body size and behavioural type (personality). We documented temporal changes in partner availability and used a mixed model approach to analyse individual behaviours and changes in mating status recorded on an hourly basis. We assessed whether all or only a subset of individuals in the population expressed a tendency to mate with similar phenotypes. Our analyses took into account variation in the level of competition and in the phenotypes of available partners. Males and females exhibited significant assortative mating by body size: the largest males and females, and the smallest males and females mated together more often than random. However, individuals of intermediate size were equally likely to mate with small, intermediate or large partners. Individuals also displayed two contrasting patterns of assortative mating by personality (activity level). Individuals generally mated preferentially with partners of similar activity level. However, beyond that general trend, individuals with more extreme personalities tended to exhibit disassortative mating: the most active males mated disproportionately with less active females and the least active males tended to mate with more active females. Our analyses thus revealed multiple, distinct patterns of nonrandom mating. These mating patterns did not arise from differences in partner availability among individuals and were robust to temporal changes in social conditions. Hence, mating patterns likely reflect mate preferences or arise from male-male competition coupled with sexual conflict. Our study also stresses the importance of accounting for variation in partner availability and demonstrates the influence of behavioural variation on mating patterns.


Assuntos
Tamanho Corporal/fisiologia , Heterópteros/fisiologia , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Modelos Biológicos , Personalidade , Fenótipo , Fatores de Tempo
5.
Proc Biol Sci ; 280(1773): 20132349, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24197414

RESUMO

Dispersal is a fundamental life-history trait for many ecological processes. Recent studies suggest that dispersers, in comparison to residents, display various phenotypic specializations increasing their dispersal inclination or success. Among them, dispersers are believed to be consistently more bold, exploratory, asocial or aggressive than residents. These links between behavioural types and dispersal should vary with the cause of dispersal. However, with the exception of one study, personality-dependent dispersal has not been studied in contrasting environments. Here, we used mosquitofish (Gambusia affinis) to test whether personality-dependent dispersal varies with predation risk, a factor that should induce boldness or sociability-dependent dispersal. Corroborating previous studies, we found that dispersing mosquitofish are less social than non-dispersing fish when there was no predation risk. However, personality-dependent dispersal is negated under predation risk, dispersers having similar personality types to residents. Our results suggest that adaptive dispersal decisions could commonly depend on interactions between phenotypes and ecological contexts.


Assuntos
Distribuição Animal , Ciprinodontiformes/fisiologia , Personalidade , Adaptação Fisiológica , Animais , Dinâmica Populacional , Comportamento Predatório , Análise de Componente Principal , Assunção de Riscos , Comportamento Social
6.
Ecol Lett ; 15(3): 278-89, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22239107

RESUMO

Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions.


Assuntos
Comportamento Animal/fisiologia , Animais , Ecologia , Dinâmica Populacional
7.
Am Nat ; 177(3): 273-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21460537

RESUMO

Ecological invasions are a major worldwide problem exacting tremendous economic and ecological costs. Efforts to explain variability in invasion speed and impact by searching for combinations of ecological conditions and species traits associated with invasions have met with mixed success. We use a simulation model that integrates insights from life-history theory, animal personalities, network theory, and spatial ecology to derive a new mechanism for explaining variation in animal invasion success. We show that spread occurs most rapidly when (1) a species includes a mix of life-history or personality types that differ in density-dependent performance and dispersal tendencies, (2) the differences between types are of intermediate magnitude, and (3) patch connections are intermediate in number and widely spread. Within-species polymorphism in phenotype (e.g., life-history strategies or personality), a feature not included in previous models, is important for overcoming the fact that different traits are associated with success in different stages of the invasion process. Polymorphism in sociability (a personality type) increases the speed of the invasion front, since asocial individuals colonize empty patches and facilitate the local growth of social types that, in turn, induce faster dispersal by asocials at the invasion edge. The results hold implications for the prediction of invasion impacts and the classification of traits associated with invasiveness.


Assuntos
Espécies Introduzidas , Modelos Biológicos , Polimorfismo Genético , Comportamento Social , Migração Animal , Animais , Ecossistema , Aptidão Genética , Fenótipo , Densidade Demográfica , Dinâmica Populacional
8.
Proc Biol Sci ; 278(1712): 1670-8, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21068033

RESUMO

Understanding/predicting ecological invasions is an important challenge in modern ecology because of their immense economical and ecological costs. Recent studies have revealed that within-species variation in behaviour (i.e. animal personality) can shed light on the invasion process. The general hypothesis is that individuals' personality type may affect their colonization success, suggesting that some individuals might be better invaders than others. We have recently shown that, in the invasive mosquitofish (Gambusia affinis), social personality trait was an important indicator of dispersal distance, with more asocial individuals dispersing further. Here, we tested how mean personality within a population, in addition to individual personality type, affect dispersal and settlement decisions in the mosquitofish. We found that individual dispersal tendencies were influenced by the population's mean boldness and sociability score. For example, individuals from populations with more asocial individuals or with more bold individuals are more likely to disperse regardless of their own personality type. We suggest that identifying behavioural traits facilitating invasions, even at the group level, can thus have direct applications in pest management.


Assuntos
Comportamento Animal , Ciprinodontiformes/fisiologia , Espécies Introduzidas , Personalidade , Comportamento Social , Animais , Tamanho Corporal , Ciprinodontiformes/anatomia & histologia , Densidade Demográfica , Dinâmica Populacional
9.
Proc Biol Sci ; 277(1687): 1571-9, 2010 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-20071380

RESUMO

Ecological invasions, where non-native species spread to new areas, grow to high densities and have large, negative impacts on ecological communities, are a major worldwide problem. Recent studies suggest that one of the key mechanisms influencing invasion dynamics is personality-dependent dispersal: the tendency for dispersers to have a different personality type than the average from a source population. We examined this possibility in the invasive mosquitofish (Gambusia affinis). We measured individual tendencies to disperse in experimental streams and several personality traits: sociability, boldness, activity and exploration tendency before and three weeks after dispersal. We found that mosquitofish display consistent behavioural tendencies over time, and significant positive correlations between all personality traits. Most notably, sociability was an important indicator of dispersal distance, with more asocial individuals dispersing further, suggesting personality-biased dispersal on an invasion front. These results could have important ecological implications, as invasion by a biased subset of individuals is likely to have different ecological impacts than invasion by a random group of colonists.


Assuntos
Migração Animal , Comportamento Animal , Ciprinodontiformes/fisiologia , Comportamento Social , Migração Animal/fisiologia , Animais , Densidade Demográfica , Dinâmica Populacional
10.
Nature ; 450(7167): E5; discussion E5-6, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994035

RESUMO

Wolf et al. propose a model to explain the existence of animal personalities, consistent with behavioural differences among individuals in various contexts--their explanation is counter-intuitive and cogent. However, all models have their limits, and the particular life-history requirements of this one may be unclear. Here we analyse their model and clarify its organismal scope.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Personalidade , Agressão , Animais , Retroalimentação , Modelos Biológicos , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...