Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1439: 273-304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27317002

RESUMO

The use of multiparametric microscopy-based screens with automated analysis has enabled the large-scale study of biological phenomena that are currently not measurable by any other method. Collectively referred to as high-content screening (HCS), or high-content analysis (HCA), these methods rely on an expanding array of imaging hardware and software automation. Coupled with an ever-growing amount of diverse chemical matter and functional genomic tools, HCS has helped open the door to a new frontier of understanding cell biology through phenotype-driven screening. With the ability to interrogate biology on a cell-by-cell basis in highly parallel microplate-based platforms, the utility of HCS continues to grow as advancements are made in acquisition speed, model system complexity, data management, and analysis systems. This chapter uses an example of screening for genetic factors regulating mitochondrial quality control to exemplify the practical considerations in developing and executing high-content campaigns.


Assuntos
Genômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Software
2.
Nature ; 524(7565): 309-314, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26266977

RESUMO

Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.


Assuntos
Autofagia/fisiologia , Mitofagia/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
J Cell Biol ; 210(3): 435-50, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26240184

RESUMO

The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mitofagia/genética , Complexos Multiproteicos/antagonistas & inibidores , Fagossomos/metabolismo , Proteínas Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
4.
ACS Chem Biol ; 10(5): 1188-97, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25689131

RESUMO

Parkin, an E3 ubiquitin ligase, is a central mediator of mitochondrial quality control and is linked to familial forms of Parkinson's disease (PD). Removal of dysfunctional mitochondria from the cell by Parkin is thought to be neuroprotective, and pharmacologically increasing Parkin levels may be a novel therapeutic approach. We used genome-editing to integrate a coincidence reporter into the PARK2 gene locus of a neuroblastoma-derived cell line and developed a quantitative high-throughput screening (qHTS) assay capable of accurately detecting subtle compound-mediated increases in endogenous PARK2 expression. Interrogation of a chemogenomic library revealed diverse chemical classes that up-regulate the PARK2 transcript, including epigenetic agents, drugs controlling cholesterol biosynthesis, and JNK inhibitors. Use of the coincidence reporter eliminated wasted time pursuing reporter-biased false positives accounting for ∼2/3 of the actives and, coupled with titration-based screening, greatly improves the efficiency of compound selection. This approach represents a strategy to revitalize reporter-gene assays for drug discovery.


Assuntos
Perfilação da Expressão Gênica , Genes Reporter , Genômica , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Colesterol/biossíntese , Epigênese Genética , Ensaios de Triagem em Larga Escala , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores
5.
J Cell Biol ; 205(2): 143-53, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24751536

RESUMO

PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin's ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity.


Assuntos
Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Drosophila melanogaster , Ativação Enzimática/fisiologia , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
6.
Elife ; 3: e01612, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24569479

RESUMO

Damaged mitochondria can be selectively eliminated by mitophagy. Although two gene products mutated in Parkinson's disease, PINK1, and Parkin have been found to play a central role in triggering mitophagy in mammals, how the pre-autophagosomal isolation membrane selectively and accurately engulfs damaged mitochondria remains unclear. In this study, we demonstrate that TBC1D15, a mitochondrial Rab GTPase-activating protein (Rab-GAP), governs autophagosome biogenesis and morphology downstream of Parkin activation. To constrain autophagosome morphogenesis to that of the cargo, TBC1D15 inhibits Rab7 activity and associates with both the mitochondria through binding Fis1 and the isolation membrane through the interactions with LC3/GABARAP family members. Another TBC family member TBC1D17, also participates in mitophagy and forms homodimers and heterodimers with TBC1D15. These results demonstrate that TBC1D15 and TBC1D17 mediate proper autophagic encapsulation of mitochondria by regulating Rab7 activity at the interface between mitochondria and isolation membranes. DOI: http://dx.doi.org/10.7554/eLife.01612.001.


Assuntos
Autofagia , Proteínas Ativadoras de GTPase/metabolismo , Lisossomos/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Família da Proteína 8 Relacionada à Autofagia , Proteínas Ativadoras de GTPase/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Lisossomos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
7.
Mol Cell Biol ; 33(18): 3675-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23878393

RESUMO

During autophagy, a double membrane envelops cellular material for trafficking to the lysosome. Human beclin-1 and its yeast homologue, Atg6/Vps30, are scaffold proteins bound in a lipid kinase complex with multiple cellular functions, including autophagy. Several different Atg6 complexes exist, with an autophagy-specific form containing Atg14. However, the roles of Atg14 and beclin-1 in the activation of this complex remain unclear. We here addressed the mechanism of beclin-1 complex activation and reveal two critical steps in this pathway. First, we identified a unique domain in beclin-1, conserved in the yeast homologue Atg6, which is involved in membrane association and, unexpectedly, controls autophagosome size and number in yeast. Second, we demonstrated that human Atg14 is critical in controlling an autophagy-dependent phosphorylation of beclin-1. We map these novel phosphorylation sites to serines 90 and 93 and demonstrate that phosphorylation at these sites is necessary for maximal autophagy. These results help clarify the mechanism of beclin-1 and Atg14 during autophagy.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Sítios de Ligação , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Fagossomos/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Serina/química
8.
EMBO J ; 30(23): 4728-38, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21926970

RESUMO

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.


Assuntos
Moléculas de Adesão Celular , Imunoglobulinas , Neuritos/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Sinapses/metabolismo , Animais , Células COS , Adesão Celular/fisiologia , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultura , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Hipocampo/citologia , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Camundongos
9.
Endocrinology ; 152(6): 2364-76, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21486934

RESUMO

Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.


Assuntos
Astrócitos/metabolismo , Receptores ErbB/metabolismo , Camundongos/metabolismo , Desenvolvimento Sexual , Animais , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/genética , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos/genética , Camundongos/crescimento & desenvolvimento , Camundongos Transgênicos , Ligação Proteica , Receptor ErbB-4 , Transdução de Sinais
10.
Neuron ; 68(5): 894-906, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21145003

RESUMO

Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Imunoglobulinas/genética , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Plasticidade Neuronal/genética , Comportamento Espacial , Sinapses/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo
11.
J Biol Chem ; 285(45): 34864-74, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20739279

RESUMO

Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Ácido N-Acetilneuramínico/química , Terminações Pré-Sinápticas/química , Animais , Células COS , Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Chlorocebus aethiops , Cristalografia por Raios X , Glicosilação , Humanos , Espectrometria de Massas , Mutação , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína
12.
Proc Natl Acad Sci U S A ; 107(16): 7568-73, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368431

RESUMO

Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/fisiologia , Dendritos/metabolismo , Cones de Crescimento/metabolismo , Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Diferenciação Celular , Movimento Celular , Concentração de Íons de Hidrogênio , Imunoglobulinas/genética , Proteínas de Membrana/genética , Camundongos , Microscopia Confocal/métodos , Modelos Biológicos , Neurônios/metabolismo , Ligação Proteica , Ratos , Proteínas Supressoras de Tumor/genética
13.
J Neurosci ; 27(46): 12516-30, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003830

RESUMO

Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Vias Neurais/embriologia , Vias Neurais/metabolismo , Sinapses/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Hipocampo/ultraestrutura , Humanos , Imunoglobulinas , Substâncias Macromoleculares/metabolismo , Camundongos , Vias Neurais/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...