Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557885

RESUMO

The worsening of air quality is an urgent human health issue of modern society. The outbreak of COVID-19 has made the improvement of air quality even more imperative, both for the general achievement of major health gains and to reduce the critical factors in the transmission of airborne diseases. Thus, the development of solutions for the filtration of airborne pollutants is pivotal. Electrospinning has gained wide attention as an effective fabrication technique for preparing ultrafine fibers which are specifically tailored for air filtration. Nevertheless, the utilization of harmful organic solvents is the major barrier for the large-scale applicability of electrospinning. The use of water-soluble synthetic polymers has attracted increasing attention as a 'green' solution in electrospinning. We reported an overview of the last five years of the scientific literature on the use of water-soluble synthetic polymers for the fabrication of multifunctional air filters layers. Most of recent studies have focused on polyvinyl alcohol (PVA). Various modifications of electrospun polymers have been also described. The use of water-soluble synthetic polymers can contribute to the scalability of electrospinning and pave the way to innovative applications. Further studies will be required to fully harness the potentiality of these 'greener' electrospinning processes.


Assuntos
Filtros de Ar , COVID-19 , Humanos , Água , Máscaras , COVID-19/epidemiologia , COVID-19/prevenção & controle , Polímeros
2.
Nanoscale ; 12(3): 1759-1778, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895375

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles with a size <5 nm are emerging nanomaterials for their excellent biocompatibility, chemical stability, and tunable surface modifications. The applications explored include dual-modal or multi-modal imaging, drug delivery, theranostics and, more recently, magnetic resonance angiography. Good biocompatibility and biosafety are regarded as the preliminary requirements for their biomedical applications and further exploration in this field is still required. We previously synthesized and characterized ultrafine (average core size of 3 nm) silica-coated superparamagnetic iron oxide fluorescent nanoparticles, named sub-5 SIO-Fl, uniform in size, shape, chemical properties and composition. The cellular uptake and in vitro biocompatibility of the as-synthesized nanoparticles were demonstrated in a human colon cancer cellular model. Here, we investigated the biocompatibility of sub-5 SIO-Fl nanoparticles in human Amniotic Mesenchymal Stromal/Stem Cells (hAMSCs). Kinetic analysis of cellular uptake showed a quick nanoparticle internalization in the first hour, increasing over time and after long exposure (48 h), the uptake rate gradually slowed down. We demonstrated that after internalization, sub-5 SIO-Fl nanoparticles neither affect hAMSC growth, viability, morphology, cytoskeletal organization, cell cycle progression, immunophenotype, and the expression of pro-angiogenic and immunoregulatory paracrine factors nor the osteogenic and myogenic differentiation markers. Furthermore, sub-5 SIO-Fl nanoparticles were intravenously injected into mice to investigate the in vivo biodistribution and toxicity profile for a time period of 7 weeks. Our findings showed an immediate transient accumulation of nanoparticles in the kidney, followed by the liver and lungs, where iron contents increased over a 7-week period. Histopathology, hematology, serum pro-inflammatory response, body weight and mortality studies demonstrated a short- and long-term biocompatibility and biosafety profile with no apparent acute and chronic toxicity caused by these nanoparticles in mice. Overall, these results suggest the feasibility of using sub-5 SIO-Fl nanoparticles as a promising agent for stem cell magnetic targeting as well as for diagnostic and therapeutic applications in oncology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Nanopartículas de Magnetita/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
3.
Sci Rep ; 7: 46513, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422155

RESUMO

Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.


Assuntos
Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Corantes Fluorescentes , Nanopartículas de Magnetita/química , Teste de Materiais , Dióxido de Silício , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
4.
Sci Rep ; 6: 37913, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885269

RESUMO

Colloidal quantum dots have recently attracted lot of interest in the fabrication of optoelectronic devices due to their unique optical properties and their simple and low cost fabrication. PbS nanocrystals emerged as the most advanced colloidal material for near infrared photodetectors. In this work we report on the fabrication and characterization of PbS colloidal quantum dot photoconductors. In order to make devices suitable for the monolithic integration with silicon electronics, we propose a simple and low cost process for the fabrication of photodetectors and investigate their operation at very low voltage bias. Our photoconductors feature high responsivity and detectivity at 1.3 µm and 1 V bias with maximum values of 30 A/W and 2·1010 cmHz1/2W-1, respectively. Detectivity close to 1011 cmHz1/2W-1 has been obtained resorting to bridge sensor readout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...