Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(25): 12237-12247, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38847457

RESUMO

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

2.
ACS Appl Mater Interfaces ; 12(7): 8403-8410, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31970987

RESUMO

The integration of lead sulfide quantum dots (QDs) with a high-conductivity material that is compatible with a scalable fabrication is an important route for the applications of QD-based photodetectors. Herein, we first developed a broadband photodetector by combining amorphous ZnO and PbS QDs, forming a heterojunction structure. The photodetector showed detectivity up to 7.9 × 1012 and 4.1 × 1011 jones under 640 and 1310 nm illumination, respectively. The role of the oxygen background pressure in the electronic structure of ZnO films grown by pulsed laser deposition was systematically studied, and it was found to play an important role in the conductivity associated with the variation of the oxygen vacancy concentration. By increasing the oxygen vacancy concentration, the electron mobility of amorphous ZnO layers dramatically increased and the work function decreased, which were beneficial for the photocurrent enhancement of ZnO/PbS QD photodetectors. Our results provide a simple and highly scalable approach to develop broadband photodetectors with high performance.

3.
Nanotechnology ; 27(37): 375705, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27501526

RESUMO

We report on the characterization of resistive switching devices based on epitaxial CeO2 thin films as a functional material. CeO2 epitaxial thin films were grown by the pulsed laser deposition technique on conductive substrates. Platinum and titanium nitride top electrodes (TE) were successively deposited. Very good performances, in terms of resistivity switching and multilevel operation capability, were obtained using the Pt TE. The dependence of the low resistance and high resistance state on the TE material and on the CeO2 film thickness were explained. The electrical characteristics of these heterostructures make them promising as synapse for neuromorphic computation, but suggest also their use with multi-valued digital systems or multibit memory cells.

4.
ACS Appl Mater Interfaces ; 8(23): 14613-21, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27192540

RESUMO

Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.

5.
Nanotechnology ; 26(32): 325302, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207015

RESUMO

Scanning probe bias techniques have been used as a method to locally dope thin epitaxial films of La(2)CuO(4) (LCO) fabricated by pulsed laser deposition. The local electrochemical oxidation of LCO very efficiently introduces interstitial oxygen defects in the thin film. Details on the influence of the tip voltage bias and environmental conditions on the surface morphology have been investigated. The results show that a local uptake of oxygen occurs in the oxidized films.

6.
Nano Lett ; 15(4): 2343-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25789878

RESUMO

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques. Here, we use electrochemical strain microscopy (ESM) to detect electrochemical activity in BZY films with nanoscale resolution. ESM in a novel cross-sectional measuring setup allows the direct visualization of the interfacial activity. The local electrochemical investigation is compared with the structural studies performed by state of art scanning transmission electron microscopy (STEM). The ESM and STEM results show a clear correlation between the conductivity and the interface structural defects. We propose a physical model based on a misfit dislocation network that introduces a novel 2D transport phenomenon, whose fingerprint is the low activation energy measured.

7.
ACS Nano ; 8(12): 12494-501, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25415828

RESUMO

A systematic study by reversible and hysteretic electrochemical strain microscopy (ESM) in samples of cerium oxide with different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in electrical conduction mechanism and related surface activity, such as water adsorption and dissociation with subsequent proton liberation. We have measured the behavior of the reversible hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first-order reversal curve method. The measurements have been performed in much smaller temperature ranges with respect to alternative measuring techniques. Complementing our study with hard X-ray photoemission spectroscopy and irreversible scanning probe measurements, we find that water incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity clearly emerges from all of our experimental results. We find that at lower Sm concentration, proton conduction is prevalent, featured by lower activation energy and higher electrical conductivity. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.

8.
Artigo em Inglês | MEDLINE | ID: mdl-16463491

RESUMO

In this paper we report the design, fabrication process, and characterization of a 64-elements capacitive micromachined ultrasonic transducer (cMUT), 3 MHz center frequency, 100% fractional bandwidth. Using this transducer, we developed a linear probe for application in medical echographic imaging. The probe was fully characterized and tested with a commercial echographic scanner to obtain first images from phantoms and in vivo human body. The results, which quickly follow similar results obtained by other researchers, clearly show the great potentiality of this new emerging technology. The cMUT probe works better than the standard piezoelectric probe as far as the axial resolution is concerned, but it suffers from low sensitivity. At present this can be a limit, especially for in depth operation. But we are strongly confident that significant improvements can be obtained in the very near future to overcome this limitation, with a better transducer design, the use of an acoustic lens, and using well matched, front-end electronics between the transducer and the echographic system.


Assuntos
Desenho Assistido por Computador , Membranas Artificiais , Microeletrodos , Transdutores , Ultrassonografia/instrumentação , Capacitância Elétrica , Eletrônica Médica , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-12322876

RESUMO

In this letter, a 1.8-mm x 1.8-mm capacitive micromachined ultrasonic transducer (CMUT) element is experimentally characterized by means of optical measurements. Optical displacement measurements provide information on the resonant behavior of the single membranes and also allow us to investigate the dispersion in the frequency spectrum of adjacent membranes. In addition, higher order mode shapes are observed, showing that either symmetrical or asymmetrical modes are excited in CMUT membranes. Laser interferometry vibration maps, combined with quantitative displacement measurements, provide information about the quality and repeatability of the fabrication process, which is a basic requirement for 2-D array fabrication for ultrasound imaging.


Assuntos
Imageamento Tridimensional/instrumentação , Interferometria/métodos , Teste de Materiais/instrumentação , Membranas Artificiais , Transdutores , Materiais Revestidos Biocompatíveis/química , Capacitância Elétrica , Desenho de Equipamento/métodos , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Lasers , Teste de Materiais/métodos , Movimento (Física) , Óxidos/química , Ondas de Rádio , Reprodutibilidade dos Testes , Resinas Sintéticas/química , Sensibilidade e Especificidade , Compostos de Silício/química , Ultrassom , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA