Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(22): 7877-7884, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35607711

RESUMO

Many chromatographers have observed that the operating pressure can dramatically change the chromatographic retention of solutes. Small molecules show observables changes, yet even more sizable effects are encountered with large biomolecules. With this work, we have explored the use of pressure as a method development parameter to alter the reversed-phase selectivity of peptide and protein separations. An apparatus for the facile manipulation of column pressure was assembled through a two-pump system and postcolumn flow restriction. The primary pump provided an eluent flow through the column, while the secondary pump provided a pressure-modulating flow at a tee junction after the column but ahead of a flow restrictor. Using this setup, we were able to quickly program various constant pressure changes and even pressure gradients. It was reconfirmed that pressure changes impact the retention of large molecules to a much greater degree than small molecules, making it especially interesting to consider the use of pressure to selectively separate solutes of different sizes. The addition of pressure to bring the column operating pressure beyond 500 bar was enough to change the elution order of insulin (a peptide hormone) and cytochrome C (a small serum protein). Moreover, with the proposed setup, it was possible to combine eluent and pressure gradients in the same analytical run. This advanced technique was applied to improve the separation of insulin from one of its forced degradation impurities. We have referred to this method as pressure-enhanced liquid chromatography and believe that it can offer unseen selectivity, starting with peptide and protein reversed-phase separations.


Assuntos
Insulinas , Proteínas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Peptídeos , Pressão , Proteínas/química
2.
Anal Chem ; 92(11): 7409-7412, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32375469

RESUMO

A method utilizing turbulent flow to perform ultrafast separations and screen chiral compounds in supercritical fluid chromatography (SFC) is described. Carbon dioxide at high flow rates (up to 4.0 mL/min) is delivered into gas chromatography (GC) open-tubular columns (OTC, 0.18 mm i.d., 20 m long, ∼0.2 µm stationary film thickness) to establish turbulent flow at Reynolds numbers (Re) as high as 9000. Postcolumn dispersion is eliminated by using a modified UV detector that takes measurements directly on column. Upon crossing the laminar-to-turbulent flow transition regime, a significant reduction in plate height is observed resulting in a nearly 3-fold increase in peak capacity from the laminar regime. This is explained by the massive reduction of the mass transfer resistance in the mobile phase due to a flatter flow profile and faster analyte dispersion across the open-tubular column (OTC) i.d.. Demonstrated in this work is a 9 s separation of four polycyclic aromatic hydrocarbons (PAHs) over a 2.2 s separation window using a poly(dimethylsiloxane-co-methylphenylsiloxane) coated OTC. Additionally, three chiral compounds and three chiral cyclodextrin-incorporated OTCs were evaluated at high temperatures (90-120 °C) and CO2 flow rates (3.3-3.7 mL/min) to demonstrate column stability and application of this method for rapid screening. Turbulent SFC provides a separation method for users desiring to achieve separation speeds above what is currently available with very high-pressure LC systems and do so without the resolution loss commonly observed at maximum allowable speed.

3.
J Chromatogr A ; 1566: 64-78, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29958681

RESUMO

A semi-preparative high-resolution system based on twin column recycling liquid chromatography was built. The integrated system includes a binary pump mixer, a sample manager, a two-column oven compartment, two low-dispersion detection cells, and a fraction manager (analytical). It addresses challenges in drug/impurity purification, which involve several constraints simultaneously: (1) small selectivity factors (α < 1.2, poor resolution), (2) mismatch of elution strength between the sample diluent and the eluent causing severe band fronting or tailing, (3) diluent-to-eluent mismatch of viscosity causing viscous fingering and unpredictable band deformation, (4) low abundance of the impurity relative to the active pharmaceutical ingredient (API) (<1/100), and (5) yield and purity levels to be larger than 99% and 90%, respectively. The prototype system was tested for the preparation of a trace impurity present in a concentrated solution of an API, estradiol. The ultimate goal was to collect ∼1 mg of impurity (>90% purity) for unambiguous structure elucidation by liquid state nuclear magnetic resonance (NMR 600 MHz and above). First, the particle size (3.5 µm) used to pack the 4.6 mm × 150 mm long twin columns is selected so that the speed-resolution of the recycling process is maximized at 4000 psi pressure drop. Next, the production rate of the process is also maximized by determining the optimum number (7) of cycles and the corresponding largest sample volume (160 µL) to be injected. Finally, the process is fully automated by programming the time events related to (1) sample cleaning, (2) transfer of the targeted impurity from one to the second twin column, and (3) impurity collection. The process was tested without interruption during one week for the collection of a trace impurity (α = 1.166, strong acetonitrile-methanol sample diluent, concentration ∼2 mg/L) from a concentrated (10 g/L) stock solution (60 mL total) of estradiol. The process enriches the impurity content relative to the API by about a factor ∼5000. For the lack of a sufficient collected amount (∼120 µg only) of the pure impurity (purity 50% only), NMR experiments could not provide reliable results. Instead, the combination of LC-MS (single ion monitoring) and UV absorption spectra (λmax shift) revealed that the targeted impurity was likely the low-abundant enol tautomeric form of the ketone estrone, a possible intermediate or by-product of the synthesis reaction of estradiol.


Assuntos
Química Farmacêutica/métodos , Cromatografia Líquida , Contaminação de Medicamentos , Acetonitrilas/química , Espectroscopia de Ressonância Magnética , Metanol/química , Tamanho da Partícula , Pressão
4.
J Chromatogr A ; 1564: 176-187, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29891403

RESUMO

The average dispersion coefficients, Da¯, of two small molecules (acetonitrile and coronene) were measured under laminar, transient, and sustained turbulent flow regimes along fused silica open tubular capillary (OTC) columns (180 µm inner diameter by 20 m length). Carbon dioxide was used as the mobile phase at room temperature (296 K) and at average pressures in the range from 1500 to 2700 psi. The Reynolds number (Re) was increased from 600 to 5000. The measurement of Da¯ is based on the observed plate height of the non-retained analytes as a function of the applied Reynolds number. Da¯ values are directly estimated from the best fit of the general Golay HETP equation to the experimental plate height curves. The experimental data revealed that under a pre-turbulent flow regime (Re < 2000), Da¯ is 2-6 times larger (3.5 × 10-4 cm2/s) than the bulk diffusion coefficients Dm of the analyte (1.6 × 10-4 and 5.8 × 10-5 cm2/s for acetonitrile and coronene, respectively). This result was explained by the random formation of decaying or vanishing turbulent puffs under pre-turbulent flow regime. Yet, the peak width remains controlled exclusively by the slow mass transfer in the mobile phase across the inner diameter (i.d.) of the OTC. Under sustained turbulent flow regime (Re > 2500), Da¯ is about four to five orders of magnitude larger than Dm. The experimental data slightly overestimated the turbulent dispersion coefficients predicted by Flint-Eisenklam model (Da¯=4 cm2/s). The discrepancy is explained by the approximate nature of the general Golay equation, which assumes that Da¯ is strictly uniform across the entire i.d. of the OTC. In fact, both the viscous and buffer wall layers, in which viscous effects dominate inertial effects, cannot be considered as fully developed turbulent regions. Remarkably, the mass transfer mechanism in OTC under sustained turbulent flow regime is not only controlled by longitudinal dispersion but also by a slow mass transfer in the mobile phase across the thick buffer layer and the thin viscous layer. Altogether, these layers occupy as much as 35% of the OTC volume at Re = 4000. From a theoretical viewpoint, the general Golay HETP equation is only an approximate model which should be refined based on the actual profile of the analyte dispersion coefficient across the OTC i.d. In practice, the measured plate height of non-retained analytes under sustained turbulent flow of carbon dioxide are two orders of magnitude smaller than those expected under hypothetical laminar flow regime.


Assuntos
Dióxido de Carbono/química , Reologia , Acetonitrilas/química , Difusão , Peso Molecular , Compostos Policíclicos/química , Pressão , Dióxido de Silício , Viscosidade
5.
Anal Chem ; 89(14): 7615-7622, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28578567

RESUMO

Analytical solutions enabling the quantification of circulating levels of liposoluble micronutrients such as vitamins and carotenoids are currently limited to either single or a reduced panel of analytes. The requirement to use multiple approaches hampers the investigation of the biological variability on a large number of samples in a time and cost efficient manner. With the goal to develop high-throughput and robust quantitative methods for the profiling of micronutrients in human plasma, we introduce a novel, validated workflow for the determination of 14 fat-soluble vitamins and carotenoids in a single run. Automated supported liquid extraction was optimized and implemented to simultaneously parallelize 48 samples in 1 h, and the analytes were measured using ultrahigh-performance supercritical fluid chromatography coupled to tandem mass spectrometry in less than 8 min. An improved mass spectrometry interface hardware was built up to minimize the post-decompression volume and to allow better control of the chromatographic effluent density on its route toward and into the ion source. In addition, a specific make-up solvent condition was developed to ensure both analytes and matrix constituents solubility after mobile phase decompression. The optimized interface resulted in improved spray plume stability and conserved matrix compounds solubility leading to enhanced hyphenation robustness while ensuring both suitable analytical repeatability and improved the detection sensitivity. The overall developed methodology gives recoveries within 85-115%, as well as within and between-day coefficient of variation of 2 and 14%, respectively.


Assuntos
Carotenoides/sangue , Gorduras/química , Vitaminas/sangue , Cromatografia com Fluido Supercrítico , Humanos , Estrutura Molecular , Solubilidade , Espectrometria de Massas por Ionização por Electrospray
6.
J Chromatogr A ; 1501: 142-150, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28434714

RESUMO

The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300µm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300µm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10µm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180µm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime.


Assuntos
Cromatografia com Fluido Supercrítico/instrumentação , Derivados de Benzeno/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Cinética , Modelos Teóricos , Pressão , Dióxido de Silício/química , Temperatura
7.
J Chromatogr A ; 1472: 107-116, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27773391

RESUMO

The rapid and complete baseline separation of both volatile (C5 to C16 alkanes in gasoline or terpenes in plant extracts) and non-volatile (>C20 alkanes) organic compounds was achieved by combining (1) low-density fluid chromatography (LDFC) using carbon dioxide at elevated temperature (>90°C) and low pressure (1500psi) designed to increase the retention of the most volatile compounds and (2) high-vacuum technology (<10-4Torr) in order to preserve the maximum efficiency of short analytical columns (3.0mm×150mm packed with 1.8µm fully porous HSS-SB-C18 particles) when used in LDFC. The volatile compounds are eluted first under isobaric conditions (1500psi) in less than a minute followed by a linear gradient of the column back pressure (from 1500 to 3500psi in 5min) for the elution of the non-volatile compounds up to C40. The experimental results demonstrate that LDFC performed with short 3.0mm i.d. columns packed with sub-2µm particles and placed under adiabatic conditions enables the analysts to deliver a single, fast, and high-resolution separation of both volatile and non-volatile compounds.


Assuntos
Alcanos/isolamento & purificação , Cromatografia Líquida/métodos , Gases/isolamento & purificação , Terpenos/isolamento & purificação , Alcanos/química , Cannabis/química , Dióxido de Carbono/química , Gases/química , Gasolina/análise , Extratos Vegetais/química , Porosidade , Pressão , Temperatura , Terpenos/química , Volatilização
8.
J Chromatogr A ; 1468: 217-227, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27658377

RESUMO

The performance of a 3.0mm×150mm column packed with 1.8µm fully porous HSS-SB-C18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10-5Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/instrumentação , Modelos Teóricos , Porosidade , Pressão , Temperatura , Vácuo
9.
Anal Chem ; 82(24): 10060-7, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21073174

RESUMO

A novel chromatographic separation method is introduced which employs water (saturated with CO(2)) as a stationary phase and CO(2) (saturated with water) as a mobile phase. Since water and CO(2) have little miscibility, conditions can be attained that create a stationary phase of water lining the inside of an uncoated stainless steel capillary. Because altering temperature and pressure can change both the density of the mobile phase and the polarity of the stationary phase, these experimental parameters offer good flexibility for optimizing separations and allow for different gradient programmed separation options. Further, since this method is free of organic stationary and mobile phase components, it is environmentally compatible and allows the use of universal flame ionization detection. This system offers very good sample capacity, peak symmetry, and retention time reproducibility (∼1% RSD run-to-run, ∼4% RSD day-to-day). Analytes such as alcohols, carboxylic acids, phenols, and tocopherols are employed to investigate this relatively inexpensive and robust method. As an application, the system is used to quantify ethanol in alcoholic beverages and biofuel and to analyze caffeine levels in drinks. In all cases, quantitative results are obtained with quick throughput times and often little need for sample preparation.

10.
J Chromatogr A ; 1200(1): 49-54, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18384798

RESUMO

A novel method of increasing the elution strength in subcritical water chromatography (SWC) by adding CO2 to the water mobile phase is presented. Since the polarity of water reduces dramatically with increasing temperature, this property is used in SWC to create an isocratic mobile phase with tunable elutropic strength in reversed-phase separations. Unfortunately, thermal stability of the stationary phase dictates the upper temperature limit and therefore also the minimum available mobile phase polarity. As a result SWC is often not very effective at eluting non-polar analytes. However, when CO2 is blended into subcritical water, a considerable reduction in mobile phase polarity results and improves such separations. For example, in conventional SWC 1-octanol is not observed to elute from a PRP-1 column after several hours at the maximum column temperature of 200 degrees C. In contrast to this, when CO2 is present at 180atm (1atm=101325Pa) in the mobile phase, 1-octanol elutes with good peak shape in less than 4min at only 100 degrees C. The technique is applied to the separation of a variety of analytes which have previously been challenging or even not possible to analyze by conventional SWC. Further, the ability to use temperature and composition programming with the blended CO2/water mobile phase in SWC is also presented and discussed. Overall, the developed method considerably extends the range of non-polar analytes amenable to SWC analysis, while maintaining the beneficial conventional SWC features of flame ionization detection and environmental compatibility.


Assuntos
Dióxido de Carbono/química , Cromatografia/métodos
11.
J Chromatogr A ; 1139(2): 199-205, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17126845

RESUMO

A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Calefação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA