Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(1): 104-110, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175135

RESUMO

Structured light arrays of various shapes have been a cornerstone in optical science, driven by the complexities of precise and adaptable generation. This study introduces an approach using a spatial light modulator (SLM) as a generator for these arrays. By projecting a holographic mask onto the SLM, it functions simultaneously as an optical convolution device, focusing mechanism, and structured light beam mask. Our approach offers unmatched versatility, allowing for the experimental fabrication of traditional beam arrays like azimuthal Laguerre-Gaussian (LG), Bessel-Gaussian (BG), and Hermite-Gauss (HG) in the far-field. Notably, it has enabled a method of generating Ince-Gauss (IG) and LG radial mode beam arrays using a convolution solution. Our system provides exceptional control over array periodicity and intensity distribution, bypassing the Talbot self-imaging phenomenon seen in traditional setups. We provide an in-depth theoretical discussion, supported by empirical evidence, of our far-field results. This method has vast potential for applications in optical communication, data processing, and multi-particle manipulation. It paves the way for rapid generation of structured light with high spatial frequencies and complex shapes, promising transformative advances in these domains.

2.
ACS Appl Mater Interfaces ; 16(6): 7522-7530, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38290474

RESUMO

The piezoelectric response is a measure of the sensitivity of a material's polarization to stress or its strain to an applied field. Using in operando X-ray Bragg coherent diffraction imaging, we observe that topological vortices are the source of a 5-fold enhancement of the piezoelectric response near the vortex core. The vortices form where several low-symmetry ferroelectric phases and phase boundaries coalesce. Unlike bulk ferroelectric solid solutions in which a large piezoelectric response is associated with coexisting phases in the proximity of the triple point, the largest responses for pure BaTiO3 at the nanoscale are in spatial regions of extremely small spontaneous polarization at vortex cores. The response decays inversely with polarization away from the vortex, analogous to the behavior in bulk ceramics as the cation compositions are varied away from the triple point. We use first-principles-based molecular dynamics to augment our observations, and our results suggest that nanoscale piezoelectric materials with a large piezoelectric response can be designed within a parameter space governed by vortex cores. Our findings have implications for the development of next-generation nanoscale piezoelectric materials.

3.
Nature ; 607(7919): 480-485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859196

RESUMO

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

4.
Opt Lett ; 46(1): 13-16, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362001

RESUMO

Phase retrieval is a numerical procedure concerned with the recovery of a complex-valued signal from measurements of its amplitude. We describe a generalization of this method for multi-wavelength data acquired in a coherent diffractive imaging experiment. It exploits the wavelength-dependent scaling of the support domain to recover separate reconstructions for each wavelength, providing new possibilities for coherent diffractive imaging experiments. Limitations on the number of wavelengths are discussed through adaptation of the constraint ratio, and the method's performance is investigated as a function of the source spectrum, sample geometry, and degree of complexity through numerical simulations.

5.
Nanoscale ; 11(15): 7364-7370, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938718

RESUMO

Lattice mismatch induced epitaxial strain has been widely used to tune functional properties in complex oxide heterostructures. Apart from the epitaxial strain, a large lattice mismatch also produces other effects including modulations in microstructure and stoichiometry. However, it is challenging to distinguish the impact of these effects from the strain contribution to thin film properties. Here, we use La0.9Sr0.1MnO3 (LSMO), a lightly doped manganite close to the vertical phase boundary, as a model system to demonstrate that both epitaxial strain and cation stoichiometry induced by strain relaxation contribute to functionality tuning. The thinner LSMO films are metallic with a greatly enhanced TC which is 97 K higher than the bulk value. Such anomalies in TC and transport cannot be fully explained by the epitaxial strain alone. Detailed microstructure analysis indicates La deficiency in thinner films and twin domain formation in thicker films. Our results have revealed that both epitaxial strain and strain relaxation induced stoichiometry/microstructure modulations contribute to the modified functional properties in lightly doped manganite perovskite thin films.

6.
RSC Adv ; 9(23): 13033-13041, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520794

RESUMO

We utilize polarized neutron reflectometry (PNR) in consort with ab initio based density functional theory (DFT) calculations to study magnetoelectric coupling at the interface of a ferroelectric PbZr0.2Ti0.8O3 (PZT) and magnetic La0.67Sr0.33MnO3 (LSMO) heterostructure grown on a Nb-doped SrTiO3 (001) substrate. Functional device working conditions are mimicked by gating the heterostructure with a Pt top electrode to apply an external electric field, which alters the magnitude and switches the direction of the ferroelectric (FE) polarization, across the PZT layer. PNR results show that the gated PZT/LSMO exhibits interfacial magnetic phase modulation attributed to ferromagnetic (FM) to A-antiferromagnetic (A-AF) phase transitions resulting from hole accumulation. When the net FE polarization points towards the interface (positive), the interface doesn't undergo a magnetic phase transition and retains its global FM ordered state. In addition to changes in the interfacial magnetic ordering, the global magnetization of LSMO increases while switching the polarization from positive to negative and decreases vice versa. DFT calculations indicate that this enhanced magnetization also correlates with an out of plane tensile strain, whereas the suppressed magnetization for positive polarization is attributed to out of plane compressive strain. These calculations also show the coexistence of FM and A-AF phases at zero out of plane strain. Charge modulations throughout the LSMO layer appear to be unaffected by strain, suggesting that these charge mediated effects do not significantly change the global magnetization. Our PNR results and DFT calculations are in consort to verify that the interfacial magnetic modulations are due to co-action of strain and charge mediated effects with the strain and charge effects dominant at different length scale.

7.
J Phys Condens Matter ; 28(39): 396004, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27494690

RESUMO

Multiferroic heterostructures composed of thin layers of ferromagnetic and ferroelectric perovskites have attracted considerable attention in recent years. We apply ab initio computational methods based on density functional theory to study the magnetoelectric coupling at the (0 0 1) interface between [Formula: see text] (LSMO) and [Formula: see text] (PZT). Our study demonstrates that the ferroelectric polarization of PZT has a strong influence on the distribution of magnetization in LSMO. The presence of polarized PZT changes the balance between the ferromagnetic and antiferromagnetic states of LSMO. The observed interfacial magnetoelectric effect can be explained by the variation of the charge density across the LSMO/PZT interface and by the change of the magnetic order in the LSMO layer adjacent to PZT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA