Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687180

RESUMO

Precious metals such as palladium (Pd) have many applications, ranging from automotive catalysts to fine chemistry. Platinum group metals are, thus, in massive demand for industrial applications, even though they are relatively rare and belong to the list of critical materials for many countries. The result is an explosion of their price. The recovery of Pd from spent catalysts and, more generally, the development of a circular economy process around Pd, becomes essential for both economic and environmental reasons. To this aim, we propose a sustainable process based on the use of supercritical CO2 (i.e., a green solvent) operated in mild conditions of pressure and temperature (p = 25 MPa, T = 313 K). Note that the range of CO2 pressures commonly used for extraction is going from 15 to 100 MPa, while temperatures typically vary from 308 to 423 K. A pressure of 25 MPa and a temperature of 313 K can, therefore, be viewed as mild conditions. CO2-soluble copolymers bearing complexing groups, such as pyridine, triphenylphosphine, or acetylacetate, were added to the supercritical fluid to extract the Pd from the catalyst. Two supported catalysts were tested: a pristine aluminosilicate-supported catalyst (Cat D) and a spent alumina supported-catalyst (Cat A). An extraction conversion of up to more than 70% was achieved in the presence of the pyridine-containing copolymer. The recovery of the Pd from the polymer was possible after extraction, and the technological and economical assessment of the process was considered.

2.
ACS Appl Mater Interfaces ; 14(25): 28792-28806, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35713323

RESUMO

The layered oxide LiNi0.6Mn0.2Co0.2O2 is a very attractive positive electrode material, as shown by the good reversible capacity, chemical stability, and cyclability upon long-range cycling in Li-ion batteries and, hopefully, in the near future, in all-solid-state batteries. Three samples with variable primary particle sizes of 240 nm, 810 nm, and 2.1 µm on average and very similar structures close to the ideal 2D layered structure (less than 2% Ni2+ ions in Li+ sites) were obtained by coprecipitation followed by a solid-state reaction at high temperatures. The electrochemical performances of the materials were evaluated in a conventional organic liquid electrolyte in Li-ion batteries and in a gel electrolyte in all-solid-state batteries. The positive electrode/electrolyte interface was analyzed by X-ray photoelectron spectroscopy to determine its composition and the extent of degradation of the lithium salt and the carbonate solvents after cycling, taking into account the changes in particle size of the positive electrode material and the nature of the electrolyte.

3.
Nat Commun ; 12(1): 5485, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531403

RESUMO

Expanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the Li2TiS3-xSex solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.6 with barely no capacity for the x = 0 and x = 3 end members. We show that this capacity results from cumulated anionic (Se2-/Sen-) and (S2-/Sn-) and cationic Ti3+/Ti4+ redox processes and provide evidence for a metal-ligand charge transfer by temperature-driven electron localization. Moreover, DFT calculations reveal that an anionic redox process cannot take place without the dynamic involvement of the transition metal electronic states. These insights can guide the rational synthesis of other Li-rich chalcogenides that are of interest for the development of solid-state batteries.

4.
Anal Bioanal Chem ; 413(7): 1809-1816, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527180

RESUMO

An analytical method was developed for the speciation of elemental selenium (Se(0)) in selenized yeasts by anion-exchange HPLC-ICP-MS after its chemical transformation into SeSO32- by reaction with sodium sulfite. The presence of Se(0) in the yeasts was further confirmed by single-particle ICP-MS. Indeed, Se nanoparticles, if present, are expected to be, at least partly, Se(0). X-ray photoelectron spectroscopy, a well-recognized technique for chemical element speciation in the solid state, was also used with this objective. Both methods were able to confirm the presence of Se(0) in the selenized yeasts but failed to provide reliable quantitative results. Analytical performances of the HPLC-ICP-MS method were then evaluated for Se(0) determination. Quantification limits of 1 mg/kg were reached. The recovery levels from an added quantity comprised between 93 and 101%. Within-run and between-run precisions were both below 8%. The procedure developed was finally applied to quantify Se(0) content in a series of seven yeast batches from different suppliers. Se(0) was found to be present in all the studied yeasts and represented on average 10-15% of the total Se.


Assuntos
Ânions , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Selênio/química , Leveduras/metabolismo , Calibragem , Cromatografia , Cromatografia Líquida de Alta Pressão , Nanopartículas/química , Espectroscopia Fotoeletrônica , Pós , Compostos de Selênio/química
5.
Nat Commun ; 11(1): 1252, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144249

RESUMO

High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for Li1.2Ni0.13Mn0.54Co0.13O2 electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A' formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P" phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of Li1.2Ni0.13Mn0.54Co0.13O2 and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.

6.
Phys Chem Chem Phys ; 21(46): 25720-25727, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31720609

RESUMO

Chromium disilicide (CrSi2) particles were synthesized by using an arc melting furnace followed by mechanical milling. XRD and DLS analyses show that aggregates of around 3 µm containing about 10 nm sized crystallites were obtained. These aggregates were functionalized in solution by coupling agents with different anchoring groups (silane, phosphonic acid, alkene and thiol) in order to disperse them into an organic polymer. Dodecene was used to modify the CrSi2 surface during mechano-synthesis in a grinding bowl with quite little solvent quantity and the optimization step allowed the aggregate size to be reduced to 500 nm. A thermoelectric composite was then made of alkene CrSi2 grafted samples and poly(p-phénylène-2,6-benzobisoxazole). This study opens the route for new surface grafting of intermetallic silicides for applications linked to electronics and/or energy.

7.
Nat Commun ; 8(1): 2219, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263321

RESUMO

Reversible anionic redox has rejuvenated the search for high-capacity lithium-ion battery cathodes. Real-world success necessitates the holistic mastering of this electrochemistry's kinetics, thermodynamics, and stability. Here we prove oxygen redox reactivity in the archetypical lithium- and manganese-rich layered cathodes through bulk-sensitive synchrotron-based spectroscopies, and elucidate their complete anionic/cationic charge-compensation mechanism. Furthermore, via various electroanalytical methods, we answer how the anionic/cationic interplay governs application-wise important issues-namely sluggish kinetics, large hysteresis, and voltage fade-that afflict these promising cathodes despite widespread industrial and academic efforts. We find that cationic redox is kinetically fast and without hysteresis unlike sluggish anions, which furthermore show different oxidation vs. reduction potentials. Additionally, more time spent with fully oxidized oxygen promotes voltage fade. These fundamental insights about anionic redox are indispensable for improving lithium-rich cathodes. Moreover, our methodology provides guidelines for assessing the merits of existing and future anionic redox-based high-energy cathodes, which are being discovered rapidly.

8.
Nat Mater ; 16(5): 580-586, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28250444

RESUMO

Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a ß-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, ß-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

9.
Adv Mater ; 28(44): 9824-9830, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27647567

RESUMO

Microsized Sn presents stable cyclic performance in a glyme-based electrolyte, which brings 19% increase in energy density of Sn/Na3 V2 (PO4 )3 cells as compared to the cells using a hard carbon anode. The NaSn intermediate phases are also clarified.

10.
Science ; 350(6267): 1516-21, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680196

RESUMO

Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.

11.
Sci Rep ; 5: 10928, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26042388

RESUMO

This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...