Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 782685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401678

RESUMO

Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.

2.
NPJ Parkinsons Dis ; 7(1): 113, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893635

RESUMO

Pathogenic variants in PINK1 cause early-onset Parkinson's disease. Although many PINK1 variants have been reported, the clinical significance is uncertain for the majority of them. To gain insights into the consequences of PINK1 missense variants in a systematic manner, we selected 50 PINK1 missense variants from patient- and population-wide databases and systematically classified them using Sherloc, a comprehensive framework for variant interpretation based on ACMG-AMP guidelines. We then performed functional experiments, including mitophagy and Parkin recruitment assays, to assess the downstream consequences of PINK1 variants. Analysis of PINK1 missense variants based on Sherloc showed that the patient databases over-annotate variants as likely pathogenic. Furthermore, our study shows that pathogenic PINK1 variants are most often linked to a loss-of-function for mitophagy and Parkin recruitment, while this is not observed for variants of unknown significance. In addition to the Sherloc framework, the added layer of evidence of our functional tests suggests a reclassification of 9/50 missense variants. In conclusion, we suggest the assessment of multiple layers of evidence, including functional data on top of available clinical and population-based data, to support the clinical classification of a variant and show that the presence of a missense variant in PINK1 in a Parkinson's disease case does not automatically imply pathogenicity.

3.
Transl Neurodegener ; 10(1): 19, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127073

RESUMO

BACKGROUND: Mitochondrial dysfunction plays a prominent role in the pathogenesis of Parkinson's disease (PD), and several genes linked to familial PD, including PINK1 (encoding PTEN-induced putative kinase 1 [PINK1]) and PARK2 (encoding the E3 ubiquitin ligase Parkin), are directly involved in processes such as mitophagy that maintain mitochondrial health. The dominant p.D620N variant of vacuolar protein sorting 35 ortholog (VPS35) gene is also associated with familial PD but has not been functionally connected to PINK1 and PARK2. METHODS: To better mimic and study the patient situation, we used CRISPR-Cas9 to generate heterozygous human SH-SY5Y cells carrying the PD-associated D620N variant of VPS35. These cells were treated with a protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to induce the PINK1/Parkin-mediated mitophagy, which was assessed using biochemical and microscopy approaches. RESULTS: Mitochondria in the VPS35-D620N cells exhibited reduced mitochondrial membrane potential and appeared to already be damaged at steady state. As a result, the mitochondria of these cells were desensitized to the CCCP-induced collapse in mitochondrial potential, as they displayed altered fragmentation and were unable to accumulate PINK1 at their surface upon this insult. Consequently, Parkin recruitment to the cell surface was inhibited and initiation of the PINK1/Parkin-dependent mitophagy was impaired. CONCLUSION: Our findings extend the pool of evidence that the p.D620N mutation of VPS35 causes mitochondrial dysfunction and suggest a converging pathogenic mechanism among VPS35, PINK1 and Parkin in PD.


Assuntos
Potencial da Membrana Mitocondrial/genética , Mitofagia/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética , Carbonil Cianeto m-Clorofenil Hidrazona , Linhagem Celular , Humanos , Mitógenos , Mutação
4.
Brain ; 140(11): 2860-2878, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053796

RESUMO

The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.


Assuntos
Redes Reguladoras de Genes/genética , Ataxias Espinocerebelares/genética , Animais , Células COS , Caderinas/genética , Chlorocebus aethiops , Proteína p300 Associada a E1A/genética , Exoma/genética , Feminino , Células HEK293 , Humanos , Cinesinas/genética , Masculino , Linhagem , Fosfolipase D/genética , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transfecção
5.
Brain ; 138(Pt 9): 2537-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169942

RESUMO

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.


Assuntos
Cerebelo/patologia , Dinorfinas/genética , Regulação da Expressão Gênica/genética , Transtornos dos Movimentos/etiologia , Mutação/genética , Células de Purkinje/fisiologia , Degenerações Espinocerebelares , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Dinorfinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transdução de Sinais/genética , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Sinapses/genética , Sinapses/patologia
6.
Cell Mol Life Sci ; 72(17): 3387-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25854634

RESUMO

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.


Assuntos
Mutação/genética , Células de Purkinje/metabolismo , Canais de Potássio Shal/metabolismo , Degenerações Espinocerebelares/genética , Análise de Variância , Cicloeximida , Primers do DNA/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Canais de Potássio Shal/genética
7.
PLoS One ; 10(3): e0116599, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756792

RESUMO

Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.


Assuntos
Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Ataxias Espinocerebelares/genética , População Branca/genética , Adulto , Idoso , Simulação por Computador , Estudos de Associação Genética , Predisposição Genética para Doença , Células HeLa , Humanos , Pessoa de Meia-Idade , Mutação , Países Baixos , Análise de Sequência de DNA , Ataxias Espinocerebelares/metabolismo , Adulto Jovem
9.
J Neurol ; 260(7): 1807-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23471613

RESUMO

We have recently identified missense mutations in prodynorphin (PDYN), the precursor to dynorphin opioid peptides, as the cause for spinocerebellar ataxia (SCA23) in Dutch ataxia cases. We report a screen of PDYN for mutations in 371 cerebellar ataxia cases, which had a positive family history; most are of French origin. Sequencing revealed three novel putative missense mutations and one heterozygous two-base pair deletion in four independent SCA patients. These variants were absent in 400 matched controls and are located in the highly conserved dynorphin domain. To resolve the pathogenicity of the heterozygous variants, we assessed the peptide production of the mutant PDYN proteins. Two missense mutations raised dynorphin peptide levels, the two-base pair deletion terminated dynorphin synthesis, and one missense mutation did not affect PDYN processing. Given the outcome of our functional analysis, we may have identified at least two novel PDYN mutations in a French and a Moroccan SCA patient. Our data corroborates recent work that also showed that PDYN mutations only account for a small percentage (~0.1 %) of European SCA cases.


Assuntos
Ataxia Cerebelar/genética , Encefalinas/genética , Precursores de Proteínas/genética , Adolescente , Adulto , Idade de Início , Feminino , Ligação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem
10.
Ann Neurol ; 72(6): 870-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280838

RESUMO

OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory ß subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Canais de Potássio Shal/genética , Degenerações Espinocerebelares/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Cicloeximida/farmacologia , Análise Mutacional de DNA , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Genótipo , Células HEK293/metabolismo , Células HeLa/patologia , Humanos , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Coloração pela Prata , Degenerações Espinocerebelares/patologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...