Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 24(1): 23-30, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34286423

RESUMO

PURPOSE: The ability to noninvasively quantify receptor availability (RA) in solid tumors is an aspirational goal of molecular imaging, often challenged by the influence of non-specific accumulation of the contrast agent. Paired-agent imaging (PAI) techniques aim to compensate for this effect by imaging the kinetics of a targeted agent and an untargeted isotype, often simultaneously, and comparing the kinetics of the two agents to estimate RA. This is usually accomplished using two spectrally distinct fluorescent agents, limiting the technique to superficial tissues and/or preclinical applications. Applying the approach in humans using conventional imaging modalities is generally infeasible since most modalities are unable to routinely image multiple agents simultaneously. We examine the ability of PAI to be implemented in a cross-modality paradigm, in which the targeted and untargeted agent kinetics are imaged with different modalities and used to recover receptor availability. PROCEDURES: Eighteen mice bearing orthotopic brain tumors were administered a solution containing three contrast agents: (1) a fluorescent agent targeted to epidermal growth factor receptor (EGFR), (2) an untargeted fluorescent isotype, and (3) a gadolinium-based contrast agent (GBCA) for MRI imaging. The kinetics of all three agents were imaged for 1 h after administration using an MRI-coupled fluorescence tomography system. Paired-agent receptor availability was computed using (1) the conventional all-optical approach using the targeted and untargeted optical agent images and (2) the cross-modality approach using the targeted optical and untargeted MRI-GBCA images. Receptor availability estimates between the two methods were compared. RESULTS: Receptor availability values using the cross-modality approach were highly correlated to the conventional, single-modality approach (r = 0.94; p < 0.00001). CONCLUSION: These results suggest that cross-modality paired-agent imaging for quantifying receptor availability is feasible. Ultimately, cross-modality paired-agent imaging could facilitate rapid, noninvasive receptor availability quantification in humans using hybrid clinical imaging modalities.


Assuntos
Neoplasias Encefálicas , Animais , Meios de Contraste , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Camundongos , Imagem Molecular/métodos
2.
Theranostics ; 10(24): 11230-11243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042280

RESUMO

Immuno-oncological treatment strategies that target abnormal receptor profiles of tumors are an increasingly important feature of cancer therapy. Yet, assessing receptor availability (RA) and drug-target engagement, important determinants of therapeutic efficacy, is challenging with current imaging strategies, largely due to the complex nonspecific uptake behavior of imaging agents in tumors. Herein, we evaluate whether a quantitative noninvasive imaging approach designed to compensate for nonspecific uptake, MRI-coupled paired-agent fluorescence tomography (MRI-PAFT), is capable of rapidly assessing the availability of epidermal growth factor receptor (EGFR) in response to one dose of anti-EGFR antibody therapy in orthotopic brain tumor models. Methods: Mice bearing orthotopic brain tumor xenografts with relatively high EGFR expression (U251) (N=10) or undetectable human EGFR (9L) (N=9) were considered in this study. For each tumor type, mice were either treated with one dose of cetuximab, or remained untreated. All animals were scanned using MRI-PAFT, which commenced immediately after paired-agent administration, and values of RA were recovered using a model-based approach, which uses the entire dynamic sequence of agent uptake, as well as a simplified "snapshot" approach which requires uptake measurements at only two time points. Recovered values of RA were evaluated between groups and techniques. Hematoxylin & eosin (H&E) and immunohistochemical (IHC) staining was performed on tumor specimens from every animal to confirm tumor presence and EGFR status. Results: In animals bearing EGFR(+) tumors, a significant difference in RA values between treated and untreated animals was observed (RA = 0.24 ± 0.15 and 0.61 ± 0.18, respectively, p=0.027), with an area under the curve - receiver operating characteristic (AUC-ROC) value of 0.92. We did not observe a statistically significant difference in RA values between treated and untreated animals bearing EGFR(-) tumors (RA = 0.18 ± 0.19 and 0.27 ± 0.21, respectively; p = 0.89; AUC-ROC = 0.55), nor did we observe a difference between treated EGFR(+) tumors compared to treated and untreated EGFR(-) tumors. Notably, the snapshot paired-agent strategy quantified drug-receptor engagement within just 30 minutes of agent administration. Examination of the targeted agent alone showed no capacity to distinguish tumors either by treatment or receptor status, even 24h after agent administration. Conclusions: This study demonstrated that a noninvasive imaging strategy enables rapid quantification of receptor availability in response to therapy, a capability that could be leveraged in preclinical drug development, patient stratification, and treatment monitoring.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cetuximab/uso terapêutico , Imagem Óptica/métodos , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Benzenossulfonatos/química , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Receptores ErbB/análise , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fluorescência , Humanos , Indóis/química , Imageamento por Ressonância Magnética , Camundongos , Imagem Molecular/métodos , Proteínas Recombinantes de Fusão/química , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 15(3): e0230267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160634

RESUMO

PURPOSE: Rapid, intra-operative identification of tumor tissue in the margins of excised specimens has become an important focus in the pursuit of reducing re-excision rates, especially for breast conserving surgery. Dual-probe difference specimen imaging (DDSI) is an emerging approach that uses the difference in uptake/clearance kinetics between a pair of fluorescently-labeled stains, one targeted to a biomarker-of-interest and the other an untargeted isotype, to reveal receptor-specific images of the specimen. Previous studies using antibodies labeled with either enhanced Raman particles or organic fluorophores have shown promising tumor vs. normal diagnostic performance. Yet, the unique properties of quantum dot-labeled antibody complexes (QDACs), which provide spectrally-distinct fluorescence emission from a common excitation source, make them ideal candidates for this application. Herein, we evaluate the diagnostic performance of QDAC-based DDSI in excised xenografts. PROCEDURES: Excised fresh specimens of normal tissue and human tumor xenografts with elevated expression of HER2 were stained with a HER2-targeted QDAC and an untargeted QDAC isotype. Stained specimens were imaged on a custom hyperspectral imaging system capable of spectrally separating the quantum dot signatures, and images processed using the DDSI approach. The diagnostic performance of this technique under different incubation temperatures and probe concentrations was evaluated using receiver-operator characteristic analysis. RESULTS: HER2-targeted QDAC-DDSI was able to distinguish HER2(+) tumors from normal tissue with reasonably high diagnostic performance; however, this performance was sensitive to temperature during the staining procedure. Area under the curve values were 0.61 when staining at room temperature but increased to over 0.81 when staining at 37 °C. Diagnostic performance was not affected by increasing stain concentration. CONCLUSIONS: This study is the first to report dual-probe difference imaging of specimens using QDACs and hyperspectral imaging. Our results show promising diagnostic performance under certain conditions, and compel further optimization and evaluation of this intra-operative margin assessment technique.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias Mamárias Experimentais/diagnóstico , Pontos Quânticos , Animais , Anticorpos/imunologia , Feminino , Humanos , Imunoensaio/métodos , Imunoensaio/normas , Células MCF-7 , Camundongos , Camundongos Nus , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Receptor ErbB-2/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-34183872

RESUMO

A paired-agent fluorescent molecular imaging strategy is presented as a method to measure drug target engagement in whole tumor imaging. The protocol involves dynamic imaging of a pair of targeted and control imaging agents prior to and following antibody therapy. Simulations demonstrated that antibody "drug target engagement" can be estimated within a 15%-error over a wide range of tumor physiology (blood flow, vascular permeability, target density) and antibody characteristics (affinity, binding rates). Experimental results demonstrated the first in vivo detection of binding site barrier, highlighting the potential for this methodology to provide novel insights in drug distribution/binding imaging.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34707326

RESUMO

Optical tomography is often coupled with high resolution imaging modality like MRI to provide functional information associated with specific anatomical structure noninvasively. MRI-coupled paired agent fluorescence molecular tomography (MRI-PAFT) is a hybrid imaging modality capable of noninvasively quantifying drug-target engagement in vivo utilizing a targeted and an untargeted fluorescence agent. This study compares the uptake kinetics of MRI contrast agent and fluorescence agents in tumor and normal tissue, and demonstrates the potential of utilizing MRI contrast agent kinetic and targeted fluorescence agent kinetics to quantify targeted tumor receptor concentration in glioma tumor model.

6.
J Biomed Opt ; 24(3): 1-5, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30851014

RESUMO

The observed behavior of short-wave infrared (SWIR) light in tissue, characterized by relatively low scatter and subdiffuse photon transport, has generated considerable interest for the potential of SWIR imaging to produce high-resolution, subsurface images of fluorescence activity in vivo. These properties have important implications for fluorescence-guided surgery and preclinical biomedical research. Until recently, translational efforts have been impeded by the conventional understanding that fluorescence molecular imaging in the SWIR regime requires custom molecular probes that do not yet have proven safety profiles in humans. However, recent studies have shown that two readily available near-infrared (NIR-I) fluorophores produce measurable SWIR fluorescence, implying that other conventional fluorophores produce detectable fluorescence in the SWIR window. Using SWIR spectroscopy and wide-field SWIR imaging with tissue-simulating phantoms, we characterize and compare the SWIR emission properties of eight commercially available red/NIR-I fluorophores commonly used in preclinical and clinical research, in addition to a SWIR-specific fluorophore. All fluorophores produce measurable fluorescence emission in the SWIR, including shorter wavelength dyes such as Alexa Fluor 633 and methylene blue. This study is the first to report SWIR fluorescence from six of the eight conventional fluorophores and establishes an important comparative reference for developing and evaluating SWIR imaging strategies for biomedical applications.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Desenho de Equipamento , Imagem Óptica/instrumentação , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação
7.
Artigo em Inglês | MEDLINE | ID: mdl-31929673

RESUMO

Magnetic resonance imaging (MRI) of gadolinium (Gd)-based contrast agents plays a central role in managing the treatment of intracranial tumors. These images are involved in diagnosis, surgical planning, surgical navigation, and postoperative assessment of extent of resection. Replicating the information from Gd-MRI in the visual surgical field using fluorescent agents that behave similar to gadolinium in vivo would represent a major advance for surgical intervention of these tumors, and could provide robust compensation information to update pre-operative MRI images during surgery. In this paper, we examine the uptake of a Gd-based contrast agent in orthotopic tumor models and compare this behavior to two fluorescein-based contrast agents; specifically, clinical-grade sodium fluorescein (NaFl) and a 900 Da pegylated form of fluorescein. We show that the pegylated form of fluorescein is a more promising Gd-analog candidate.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31929674

RESUMO

In the pursuit of reducing re-excision rates in breast conserving surgery, a dual probe specimen staining technique has emerged as a promising approach to identify positive margins during surgery. This approach generally involves staining the tissue with a fluorescent dye targeted to a biomarker of interest, such as a cell surface receptor, and an untargeted counterpart, imaging both dyes and using the two images together to compensate for instrumentation inhomogeneities and non-specific uptake. A growing body of literature suggests that this approach can effectively discriminate tumor and normal tissue in gross fresh specimens in reasonable timeframes. However, the robustness of the staining protocol is still under investigation as all parameters have not been fully evaluated. In this paper, we examine the effect of staining temperature on diagnostic performance. Tumor (overexpressing EGFR) and normal fresh specimens were stained at room temperature or 37 °C and diagnostic performance compared using area under the curve (AUC) from receiver operator characteristic (ROC) analysis. The results suggest that the use of Licor IRDye800CW-labeled anti-EGFR antibody and Licor IRdye680RD-labeled control antibody as the probe pair is not significantly affected by staining temperature, in contrast to our experience with quantum-dot labeled antibodies. The robustness of the technique using these stains is reassuring and simplifies the staining protocol.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31929675

RESUMO

As the role of immuno-oncological therapeutics expands, the capacity to noninvasively quantify molecular targets and drug-target engagement is increasingly critical to drug development efforts and treatment monitoring. Previously, we showed that MRI-coupled dual-agent fluorescence tomography (FMT) is capable of estimating the concentration of epidermal growth factor receptor (EGFR) in orthotopic glioma models noninvasively. This approach uses the dynamic information of two fluorescent agents (a targeted agent and untargeted isotype) to estimate tumor receptor concentration in vivo. This approach generally relies on the two tracers having similar kinetics in normal tissues, which may not always be the case. Herein, we describe an additional channel added to the MRI-FMT system which measures the uptake of both agents in the normal muscle, data which can be used to compensate for differing kinetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA