Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399249

RESUMO

The injury-triggered reocclusion (restenosis) of arteries treated with angioplasty to relieve atherosclerotic obstruction remains a challenge due to limitations of existing therapies. A combination of magnetic guidance and affinity-mediated arterial binding can pave the way to a new approach for treating restenosis by enabling efficient site-specific localization of therapeutic agents formulated in magnetizable nanoparticles (MNPs) and by maintaining their presence at the site of arterial injury throughout the vulnerability period of the disease. In these studies, we investigated a dual-targeted antirestenotic strategy using drug-loaded biodegradable MNPs, surface-modified with a fibrin-avid peptide to provide affinity for the injured arterial wall. The MNPs were characterized with regard to their magnetic properties, efficiency of surface functionalization, disassembly kinetics, and interaction with fibrin-coated substrates. The antiproliferative effects of MNPs formulated with paclitaxel were studied in vitro using a fetal cell line (A10) exhibiting the defining characteristics of neointimal smooth muscle cells. Animal studies examined the efficiency of combined (physical/affinity) MNP targeting to stented arteries in Sprague Dawley rats using fluorimetric analysis and fluorescent in vivo imaging. The antirestenotic effect of the dual-targeted therapy was determined in a rat model of in-stent restenosis 28 days post-treatment. The results showed that MNPs can be efficiently functionalized to exhibit a strong binding affinity using a simple two-step chemical process, without adversely affecting their size distribution, magnetic properties, or antiproliferative potency. Dual-targeted delivery strongly enhanced the localization and retention of MNPs in stented carotid arteries up to 7 days post-treatment, while minimizing redistribution of the carrier particles to peripheral tissues. Of the two targeting elements, the effect of magnetic guidance was shown to dominate arterial localization (p = 0.004 vs. 0.084 for magnetic targeting and peptide modification, respectively), consistent with the magnetically driven MNP accumulation step defining the extent of the ultimate affinity-mediated arterial binding and subsequent retention of the carrier particles. The enhanced arterial uptake and sustained presence of paclitaxel-loaded MNPs at the site of stent deployment were associated with a strong inhibition of restenosis in the rat carotid stenting model, with both the neointima-to-media ratio (N/M) and % stenosis markedly reduced in the dual-targeted treatment group (1.62 ± 0.2 and 21 ± 3 vs. 2.17 ± 0.40 and 29 ± 6 in the control animals; p < 0.05). We conclude that the dual-targeted delivery of antirestenotic agents formulated in fibrin-avid MNPs can provide a new platform for the safe and effective treatment of in-stent restenosis.

2.
Molecules ; 22(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665323

RESUMO

Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (En), poly(l-lysine) (Kn), and a copolymer composed of histidine-glutamic acid repeats ((HE)n) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E51/K55 and E135/K127, however, no complexes were observed when E22 or K21 were used, even in combination with the longer chains. (HE)20/K55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E51-dauno/K55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the pKa's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE)20-dauno/K55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.


Assuntos
Aminoácidos , Ânions , Cátions , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Polieletrólitos , Aminoácidos/química , Ânions/química , Cátions/química , Peptídeos/química , Polieletrólitos/química
3.
Methodist Debakey Cardiovasc J ; 8(1): 23-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22891107

RESUMO

Magnetic guidance is a physical targeting strategy with the potential to improve the safety and efficacy of a variety of therapeutic agents--including small-molecule pharmaceuticals, proteins, gene vectors, and cells--by enabling their site-specific delivery. The application of magnetic targeting for in-stent restenosis can address the need for safer and more efficient treatment strategies. However, its translation to humans may not be possible without revising the traditional magnetic targeting scheme, which is limited by its inability to selectively guide therapeutic agents to deep localized targets. An alternative two-source strategy can be realized through the use of uniform, deep-penetrating magnetic fields in conjunction with vascular stents included as part of the magnetic setup and the platform for targeted delivery to injured arteries. Studies showing the feasibility of this novel targeting strategy in in-stent restenosis models and considerations in the design of carrier formulations for magnetically guided antirestenotic therapy are discussed in this review.


Assuntos
Angioplastia/instrumentação , Arteriopatias Oclusivas/terapia , Fármacos Cardiovasculares/administração & dosagem , Reestenose Coronária/terapia , Sistemas de Liberação de Medicamentos/métodos , Magnetismo , Stents , Angioplastia/efeitos adversos , Animais , Arteriopatias Oclusivas/tratamento farmacológico , Constrição Patológica , Reestenose Coronária/tratamento farmacológico , Humanos , Desenho de Prótese , Recidiva
4.
Pharm Res ; 29(5): 1232-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274555

RESUMO

PURPOSE: Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells. METHODS: Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter. RESULTS: A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy. CONCLUSIONS: Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Magnetismo , Nanopartículas , Implantes Absorvíveis , Animais , Bovinos , Sobrevivência Celular , Células Cultivadas , Química Farmacêutica , Estabilidade de Medicamentos , Óxido Ferroso-Férrico/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Cinética , Estrutura Molecular , Tamanho da Partícula , Poliésteres/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...