Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Pain ; 15: 100149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226332

RESUMO

Chronic pain treatment remains a major challenge and pharmacological interventions are associated with important side effects. Manual medicine treatments such as massage, acupuncture, manipulation of the fascial system (MFS), and osteopathic manipulative treatments produce pain relief in humans, but the underlying mechanism is poorly understood limiting leverage and optimization of manual medicine techniques as safe pain therapy. To decipher the physiological mechanisms of manipulative medicine treatments, we have established a preclinical model. Here, we established a murine model of massage-like stroking (MLS)-induced analgesia. We characterized that the analgesia effects were present in both sexes, and were independent of the experimenters, handling, consciousness, and opioid receptors. MLS alleviates thermal pain in naive mice and postoperative pain hypersensitivity. This novel model will allow discovery of the physiological mechanisms involved in MLS-induced analgesia and identification of new therapeutic strategies.

2.
Pain ; 165(3): 608-620, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678566

RESUMO

ABSTRACT: Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown. Cancer-derived small extracellular vesicles (cancer-sEVs) are well positioned to function as mediators of communication between cancer cells and neurons. Inhibition of cancer-sEV release attenuated pain in tumor-bearing mice. Injection of purified cancer-sEVs is sufficient to induce pain hypersensitivity in naive mice that is prevented by QX-314 treatment and in Trpv1-/- mice. Cancer-sEVs triggered calcium influx in nociceptors, and inhibition or ablation of nociceptors protects against cancer pain. Interrogation of published sequencing data of human sensory neurons exposed to human cancer-sEVs suggested a stimulation of protein translation in neurons. Induction of translation by cancer-sEVs was validated in our mouse model, and its inhibition alleviated cancer pain in mice. In summary, our work reveals that HPV+ head and neck squamous cell carcinoma-derived sEVs alter TRPV1+ neurons by promoting nascent translation to mediate cancer pain and identified several promising therapeutic targets to interfere with this pathway.


Assuntos
Dor do Câncer , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Animais , Camundongos , Dor do Câncer/etiologia , Neoplasias de Cabeça e Pescoço/complicações , Dor , Neurônios , Canais de Cátion TRPV/genética
3.
Brain Behav Immun ; 116: 193-202, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081433

RESUMO

Appropriate regulation of the inflammatory response is essential for survival. Interleukin-10 (IL-10), a well-known anti-inflammatory cytokine, plays a major role in controlling inflammation. In addition to immune cells, we previously demonstrated that the IL-10 receptor (IL-10R1) is expressed in dorsal root ganglion sensory neurons. There is emerging evidence that these sensory neurons contribute to immunoregulation, and we hypothesized that IL-10 signaling in dorsal root ganglion (DRG) neurons facilitates the regulation of the inflammatory response. We showed that mice that lack IL-10R1 specifically on advillin-positive neurons have exaggerated blood nitric oxide levels, spinal microglia activation, and cytokine upregulation in the spinal cord, liver, and gut compared to wild-type (WT) counterparts in response to systemic lipopolysaccharide (LPS) injection. Lack of IL-10R1 in DRG and trigeminal ganglion (TG) neurons also increased circulating and DRG levels of proinflammatory C-C motif chemokine ligand 2 (CCL2). Interestingly, analysis of published scRNA-seq data revealed that Ccl2 and Il10ra are expressed by similar types of DRG neurons; nonpeptidergic P2X purinoceptor (P2X3R + ) neurons. In primary cultures of DRG neurons, we demonstrated that IL-10R1 inhibits the production of CCL2, but not that of the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Furthermore, our data indicate that ablation of Transient receptor potential vanilloid (TRPV)1 + neurons does not impact the regulation of CCL2 production by IL-10. In conclusion, we showed that IL-10 binds to its receptor on sensory neurons to downregulate CCL2 and contribute to immunoregulation by reducing the attraction of immune cells by DRG neuron-derived CCL2. This is the first evidence that anti-inflammatory cytokines limit inflammation through direct binding to receptors on sensory neurons. Our data also add to the growing literature that sensory neurons have immunomodulatory functions.


Assuntos
Inflamação , Interleucina-10 , Camundongos , Animais , Interleucina-10/metabolismo , Ligantes , Inflamação/metabolismo , Células Receptoras Sensoriais , Anti-Inflamatórios/metabolismo , Gânglios Espinais/metabolismo
4.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961295

RESUMO

Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain.

5.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333074

RESUMO

Chronic pain often alternates between transient remission and relapse of severe pain. While most research on chronic pain has focused on mechanisms maintaining pain, there is a critical unmet need to understand what prevents pain from re-emerging in those who recover from acute pain. We found that interleukin (IL)-10, a pain resolving cytokine, is persistently produced by resident macrophages in the spinal meninges during remission from pain. IL-10 upregulated expression and analgesic activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of IL-10 signaling or δOR triggered relapse to pain in both sexes. These data challenge the widespread assumption that remission of pain is simply a return to the naïve state before pain was induced. Instead, our findings strongly suggest a novel concept that: remission is a state of lasting pain vulnerability that results from a long-lasting neuroimmune interactions in the nociceptive system.

6.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377661

RESUMO

Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment.


Assuntos
Antineoplásicos , Neuralgia , Animais , Camundongos , Cisplatino/efeitos adversos , Purinas/farmacologia , Neuralgia/induzido quimicamente , Receptor A2A de Adenosina , Antineoplásicos/efeitos adversos
7.
Reprod Biol Endocrinol ; 19(1): 141, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517901

RESUMO

Caudal Type Homeobox 2 (CDX2) is a key regulator of trophectoderm formation and maintenance in preimplantation embryos. We previously demonstrated that supplementation of exogenous follistatin, during in vitro culture of bovine IVF embryos, upregulates CDX2 expression, possibly, via alteration of the methylation status of CDX2 gene. Here, we further investigated the effects of exogenous follistatin supplementation on developmental competence and CDX2 methylation in bovine somatic cell nuclear transfer (SCNT) embryos. SCNT embryos were cultured with or without follistatin for 72h, then transferred into follistatin free media until d7 when blastocysts were collected and subjected to CDX2 gene expression and DNA methylation analysis for CDX2 regulatory regions by bisulfite sequencing. Follistatin supplementation significantly increased both blastocyst development as well as blastocyst CDX2 mRNA expression on d7. Three different CpG rich fragments within the CDX2 regulatory elements; proximal promoter (fragment P1, -1644 to -1180; P2, -305 to +126) and intron 1 (fragment I, + 3030 to + 3710) were identified and selected for bisulfite sequencing analysis. This analysis showed that follistatin treatment induced differential methylation (DM) at specific CpG sites within the analyzed fragments. Follistatin treatment elicited hypomethylation at six CpG sites at positions -1374, -279, -163, -23, +122 and +3558 and hypermethylation at two CpG sites at positions -243 and +20 in promoter region and first intron of CDX2 gene. Motif analysis using MatInspector revealed that differentially methylated CpG sites are putative binding sites for key transcription factors (TFs) known to regulate Cdx2 expression in mouse embryos and embryonic stem cells including OCT1, AP2F, KLF and P53, or TFs that have indirect link to CDX2 regulation including HAND and NRSF. Collectively, results of the present study together with our previous findings in IVF embryos support the hypothesis that alteration of CDX2 methylation is one of the epigenetic mechanisms by which follistatin may regulates CDX2 expression in preimplantation bovine embryos.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/fisiologia , Fator de Transcrição CDX2/efeitos dos fármacos , Bovinos/embriologia , Células Cultivadas , Clonagem de Organismos/veterinária , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/genética , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Transferência Nuclear/veterinária
8.
J Neuroimmune Pharmacol ; 16(3): 531-547, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041656

RESUMO

Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.


Assuntos
Dor Crônica , Analgésicos , Analgésicos Opioides/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , Agentes de Imunomodulação , Neuroimunomodulação
9.
Anesth Analg ; 132(4): 1156-1163, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33323783

RESUMO

BACKGROUND: Pain is one of the first presenting symptoms in patients with head and neck cancer, who often develop chronic and debilitating pain as the disease progresses. Pain is also an important prognostic marker for survival. Unfortunately, patients rarely receive effective pain treatment due to our limited knowledge of the mechanisms underlying head and neck cancer pain (HNCP). Pain is often associated with neuroinflammation and particularly interleukin (IL)-1 signaling. The purpose of this study is to develop a novel syngeneic model of HNCP in immunocompetent mice to examine the contribution of IL-1 signaling. METHODS: Male C57BL/6 mice were injected with a murine model of human papillomavirus (HPV+)-induced oropharyngeal squamous cell carcinoma in their right hindlimb to induce tumor growth. Pain sensitivity was measured via von Frey filaments. Spontaneous pain was assessed via the facial grimace scale. IL-1ß was measured by quantifying gene expression via quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS: Pain hypersensitivity and spontaneous pain develop quickly after the implantation of tumor cells, a time when tumor volume is still insignificant. Spinal and circulating IL-1ß levels are significantly elevated in tumor-bearing mice. Blocking IL-1 signaling either by intrathecal administration of interleukin-1 receptor antagonist (IL-1ra) or by genetic deletion (interleukin-1 receptor knockout [Il1r1-/-]) does not alleviate HNCP. CONCLUSIONS: We established the first syngeneic model of HNCP in immunocompetent mice. Unlike inflammatory or nerve-injured pain, HNCP is independent of IL-1 signaling. These findings challenge the common belief that pain results from tissue compression or IL-1 signaling in patients with head and neck cancer.


Assuntos
Dor do Câncer/etiologia , Interleucina-1beta/metabolismo , Neoplasias Orofaríngeas/complicações , Medula Espinal/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Animais , Comportamento Animal , Dor do Câncer/metabolismo , Dor do Câncer/fisiopatologia , Linhagem Celular Tumoral , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/virologia , Limiar da Dor , Papillomaviridae/patogenicidade , Transdução de Sinais , Medula Espinal/fisiopatologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
10.
Mol Reprod Dev ; 87(9): 998-1008, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32776625

RESUMO

CDX2 plays a crucial role in the formation and maintenance of the trophectoderm epithelium in preimplantation embryos. Follistatin supplementation during the first 72 hr of in vitro culture triggers a significant increase in blastocyst rates, CDX2 expression, and trophectoderm cell numbers. However, the underlying epigenetic mechanisms by which follistatin upregulates CDX2 expression are not known. Here, we investigated whether stimulatory effects of follistatin are linked to alterations in DNA methylation within key regulatory regions of the CDX2 gene. In vitro-fertilized (IVF) zygotes were cultured with or without 10 ng/ml of recombinant human follistatin for 72 hr, then cultured without follistatin until Day 7. The bisulfite-sequencing analysis revealed differential methylation (DM) at specific CpG sites within the CDX2 promoter and intron 1 following follistatin treatment. These DM CpG sites include five hypomethylated sites at positions -1384, -1283, -297, -163, and -23, and four hypermethylated sites at positions -1501, -250, -243, and +20 in the promoter region. There were five hypomethylated sites at positions +3060, +3105, +3219, +3270, and +3545 in intron 1. Analysis of transcription factor binding sites using MatInspector combined with a literature search revealed a potential association between differentially methylated CpG sites and putative binding sites for key transcription factors involved in regulating CDX2 expression. The hypomethylated sites are putative binding sites for FXR, STAF, OCT1, KLF, AP2 family, and P53 protein, whereas the hypermethylated sites are putative binding sites for NRSF. Collectively, our results suggest that follistatin may increase CDX2 expression in early bovine embryos, at least in part, by modulating DNA methylation at key regulatory regions.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Bovinos/embriologia , Metilação de DNA/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2/metabolismo , Bovinos/genética , Células Cultivadas , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento
11.
Biol Reprod ; 102(4): 795-805, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31965149

RESUMO

Characterization of the molecular factors regulating early embryonic development and their functional mechanisms is critical for understanding the causes of early pregnancy loss in monotocous species (cattle, human). We previously characterized a stage specific functional role of follistatin, a TGF-beta superfamily binding protein, in promoting early embryonic development in cattle. The mechanism by which follistatin mediates this embryotropic effect is not precisely known as follistatin actions in cattle embryos are independent of its classically known activin inhibition activity. Apart from activin, follistatin is known to bind and modulate the activity of the bone morphogenetic proteins (BMPs), which signal through SMAD1/5 pathway and regulate several aspects of early embryogenesis in other mammalian species. Present study was designed to characterize the activity and functional requirement of BMP signaling during bovine early embryonic development and to investigate if follistatin involves BMP signaling for its stage specific embryotropic actions. Immunostaining and western blot analysis demonstrated that SMAD1/5 signaling is activated after embryonic genome activation in bovine embryos. However, days 1-3 follistatin treatment reduced the abundance of phosphorylated SMAD1/5 in cultured embryos. Inhibition of active SMAD1/5 signaling (8-16 cell to blastocyst) using pharmacological inhibitors and/or lentiviral-mediated inhibitory SMAD6 overexpression showed that SMAD1/5 signaling is required for blastocyst production, first cell lineage determination as well as mRNA and protein regulation of TE (CDX2) cell markers. SMAD1/5 signaling was also found to be essential for embryotropic actions of follistatin during days 4-7 but not days 1-3 of embryo development suggesting a role for follistatin in regulation of SMAD1/5 signaling in bovine embryos.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Gravidez , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo
12.
Toxicol Sci ; 168(2): 610-619, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629257

RESUMO

We previously demonstrated that periconception maternal administration (2 mg/kg body weight each) of cadmium chloride (CdCl2) plus methylmercury (II) chloride (CH3HgCl) impaired glucose homeostasis and increased body weights and abdominal adipose tissue weight of male offspring in the F1 generation. However, transgenerational effects of this exposure have not been studied. Therefore, the effects of periconception Cd+Hg administration on indices of chronic diseases at adulthood in F2-F4 generations were examined. Male and female progeny of Cd+Hg periconceptionally treated females, and offspring of vehicle control females were bred with naïve CD1 mice to obtain F2 offspring, with additional crosses as above to the F4 generation (F1-F4 animals were not administered Cd+Hg). Birth weights and litter size were similar in all generations. Indices of impaired glucose homeostasis were observed in matrilineally descended F2 male offspring, including reduced glucose tolerance, along with increased basal phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307 suggesting altered insulin signaling. Reduced glucose tolerance was also seen in F4 males. Increased body weight and/or abdominal adiposity were observed through the F4 generation in males descended matrilineally from the treated female progenitors. Patrilineally derived F2 females displayed reduced glucose tolerance. Females (F2) patrilineally and matrilineally derived displayed significant kidney enlargement. Periconception administration of cadmium and mercury caused persistent transgenerational effects in offspring through the F4 generation in the absence of continued toxicant exposure, with persistent transgenerational effects inherited specifically through the matrilineal germline.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Metais Pesados/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Tecido Adiposo/embriologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Feminino , Masculino , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais
13.
Reprod Biol ; 18(3): 267-273, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30196810

RESUMO

Using sex-sorted semen to produce offspring of desired sex is associated with reduced developmental competence in vitro and lower fertility rates in vivo. The objectives of the present study were to investigate the effects of exogenous follistatin supplementation on the developmental competence of bovine embryos produced with sex-sorted semen and possible link between TGF-ß regulated pathways and embryotrophic actions of follistatin. Effects of follistatin on expression of cell lineage markers (CDX2 and Nanog) and downstream targets of SMAD signaling (CTGF, ID1, ID2 and ID3) and AKT phosphorylation were investigated. Follistatin was supplemented during the initial 72 h of embryo culture. Exogenous follistatin restored the in vitro developmental competence of embryos produced with sex-sorted semen to the levels of control embryos produced with unsorted semen, and comparable results were obtained using sorted semen from three different bulls. The mRNA abundance for SMAD signaling downstream target genes, CTGF (SMAD 2/3 pathway) and ID2 (SMAD 1/5 pathway), was lower in blastocysts produced using sex-sorted versus unsorted semen, but mRNA levels for CDX2, NANOG, ID1 and ID3 were similar in both groups. Follistatin supplementation restored CTGF and ID2 mRNA in blastocysts produced using sex-sorted semen to levels of control embryos. Moreover, levels of phosphorylated (p)AKT (Ser-473 and Thr-308) were similar in embryos derived from sex-sorted and unsorted semen, but follistatin treatment increased pAKT levels in both groups. Taken together, results demonstrated that follistatin improves in vitro development of embryos produced with sex-sorted semen and such effects are associated with enhanced indices of SMAD signaling.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/veterinária , Folistatina/farmacologia , Sêmen , Animais , Bovinos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Reprod Biol Endocrinol ; 16(1): 1, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310676

RESUMO

BACKGROUND: TGF-ß signaling pathways regulate several crucial processes in female reproduction. AKT is a non-SMAD signaling pathway regulated by TGF-ß ligands essential for oocyte maturation and early embryonic development in the mouse, but its regulatory role in bovine early embryonic development is not well established. Previously, we demonstrated a stimulatory role for follistatin (a binding protein for specific members of TGF-ß superfamily) in early bovine embryonic development. The objectives of the present studies were to determine the functional role of AKT signaling in bovine early embryonic development and embryotrophic actions of follistatin. METHODS: We used AKT inhibitors III and IV as pharmacological inhibitors of AKT signaling pathway during the first 72 h of in vitro embryo culture. Effects of AKT inhibition on early embryonic development and AKT phosphorylation were investigated in the presence or absence of exogenous follistatin. RESULTS: Pharmacological inhibition of AKT signaling resulted in a significant reduction in early embryo cleavage, and development to the 8- to 16-cell and blastocyst stages (d7). Treatment with exogenous follistatin increased AKT phosphorylation and rescued the inhibitory effect of AKT inhibitors III and IV on AKT phosphorylation and early embryonic development. CONCLUSIONS: Collectively, results suggest a potential requirement of AKT for bovine early embryonic development, and suggest a potential role for follistatin in regulation of AKT signaling in early bovine embryos.


Assuntos
Bovinos/embriologia , Desenvolvimento Embrionário , Folistatina/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Bovinos/metabolismo , Feminino , Folistatina/metabolismo , Folistatina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
15.
Mol Reprod Dev ; 85(2): 106-116, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232016

RESUMO

Histone variant H3.3 is encoded by two distinct genes, H3F3A and H3F3B, that are closely associated with actively transcribed genes. H3.3 replacement is continuous and essential for maintaining correct chromatin structure during mouse oogenesis. Upon fertilization, H3.3 is incorporated to parental chromatin, and is required for blastocyst formation in mice. The H3.3 exchange process is facilitated by the chaperone HIRA, particularly during zygote development. We previously demonstrated that H3.3 is required for bovine early embryonic development; here, we explored the mechanisms of its functional requirement. H3F3A mRNA abundance is stable whereas H3F3B and HIRA mRNA are relatively dynamic during early embryonic development. H3F3B mRNA quantity is also considerably higher than H3F3A. Immunofluorescence analysis revealed an even distribution of H3.3 between paternal and maternal pronuclei in zygotes, and subsequent stage-specific localization of H3.3 in early bovine embryos. Knockdown of H3.3 by targeting both H3F3A and H3F3B dramatically decreased the expression of NANOG (a pluripotency marker) and CTGF (Connective tissue growth factor; a trophectoderm marker) in bovine blastocysts. Additionally, we noted that Histone H3 lysine 36 dimethylation and linker Histone H1 abundance is reduced in H3.3-deficient embryos, which was similar to effects following knockdown of CHD1 (Chromodomain helicase DNA-binding protein 1). By contrast, no difference was observed in the abundance of Histone H3 lysine 4 trimethylation, Histone H3 lysine 9 dimethylation, or Splicing factor 3 B1. Collectively, these results established that H3.3 is required for correct epigenetic modifications and H1 deposition, dysregulation of which likely mediate the poor development in H3.3-deficient embryos.


Assuntos
Blastocisto/metabolismo , Bovinos , Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Histonas/genética , Animais , Bovinos/embriologia , Bovinos/genética , Linhagem da Célula/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Masculino , Gravidez , Zigoto/metabolismo
16.
PLoS One ; 12(1): e0170808, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122009

RESUMO

Our previous studies demonstrated that maternal (oocyte derived) follistatin (FST) expression is positively associated with bovine oocyte competence and exogenous follistatin treatment during the pre-compaction period of development (d 1-3 post insemination) is stimulatory to bovine early embryogenesis in vitro [blastocyst rates and cell numbers/allocation to trophectoderm (TE)]. In the present study, bovine embryos were treated with exogenous follistatin during d 1-3, d 4-7 and d 1-7 post insemination to test the hypothesis that embryotropic effects of exogenous follistatin are specific to the pre-compaction period (d 1-3) of early embryogenesis. Follistatin treatment during d 4-7 (peri-/post-compaction period) of embryo culture increased proportion of embryos reaching blastocyst and expanded blastocyst stage and total cell numbers compared to controls, but blastocyst rates and total cell numbers were lower than observed following d 1-3 (pre-compaction) follistatin treatment. Follistatin supplementation during d 1-7 of embryo culture increased development to blastocyst and expanded blastocyst stages and blastocyst total cell numbers compared to d 1-3 and d 4-7 follistatin treatment and untreated controls. A similar increase in blastocyst CDX2 mRNA and protein (TE cell marker) was observed in response to d 1-3, d 4-7 and d 1-7 follistatin treatment. However, an elevation in blastocyst BMP4 protein (TE cell regulator) was observed in response to d 1-3 and d 1-7, but not d 4-7 (peri-/post-compaction) follistatin treatment. In summary, our study revealed the potential utility of follistatin treatment for increasing the success rate of in vitro embryo production in cattle. Such results also expand our understanding of the embryotropic actions of follistatin and demonstrate that follistatin actions on blastocyst development and cell allocation to the TE layer are not specific to the pre-compaction period.


Assuntos
Blastocisto/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Oócitos/efeitos dos fármacos , Animais , Blastocisto/citologia , Bovinos , Técnicas de Cultura Embrionária/métodos , Feminino , Fertilização in vitro , Oócitos/citologia
17.
Environ Health Perspect ; 125(4): 643-650, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27814245

RESUMO

BACKGROUND: Long-term exposure to the heavy metals cadmium (Cd) and mercury (Hg) is known to increase the risk of chronic diseases. However, to our knowledge, exposure to Cd and Hg beginning at the periconception period has not been studied to date. OBJECTIVE: We examined the effect of Cd and Hg that were co-administered during early development on indices of chronic diseases in adult male mice. METHODS: Adult female CD1 mice were subcutaneously administered a combination of cadmium chloride (CdCl2) and methylmercury (II) chloride (CH3HgCl) (0, 0.125, 0.5, or 2.0 mg/kg body weight each) 4 days before and 4 days after conception (8 days total). Indices of anxiety-like behavior, glucose homeostasis, endocrine and molecular markers of insulin resistance, and organ weights were examined in adult male offspring. RESULTS: Increased anxiety-like behavior, impaired glucose homeostasis, and higher body weight and abdominal adipose tissue weight were observed in male offspring of treated females compared with controls. Significantly increased serum leptin and insulin concentrations and impaired insulin tolerance in the male offspring of dams treated with 2.0 mg/kg body weight of Cd and Hg suggested insulin resistance. Altered mRNA abundance for genes associated with glucose and lipid homeostasis (GLUT4, IRS1, FASN, ACACA, FATP2, CD36, and G6PC) in liver and abdominal adipose tissues as well as increased IRS1 phosphorylation in liver (Ser 307) provided further evidence of insulin resistance. CONCLUSIONS: Results suggest that the co-administration of Cd and Hg to female mice during the early development of their offspring (the periconception period) was associated with anxiety-like behavior, altered glucose metabolism, and insulin resistance in male offspring at adulthood.


Assuntos
Cádmio/toxicidade , Substâncias Perigosas/toxicidade , Mercúrio/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Doença Crônica , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina , Masculino , Camundongos , Sobrepeso , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Testes de Toxicidade
18.
Biol Reprod ; 94(6): 140, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170440

RESUMO

The CHD family of proteins is characterized by the presence of chromodomains and SNF2-related helicase/ATPase domains, which alter gene expression by modification of chromatin structure. Chd1-null embryos arrest at the peri-implantation stage in mice. However, the functional role of CHD1 during preimplantation development remains unclear, given maternal-derived CHD1 may mask the essential role of CHD1 during this stage in traditional knockout models. The objective of this study was to characterize CHD1 expression and elucidate its functional role in preimplantation development using the bovine model. CHD1 mRNA was elevated after meiotic maturation and remained increased through the 16-cell stage, followed by a sharp decrease at morula to blastocyst stage. Similarly, immunoblot analysis indicated CHD1 protein level is increased after maturation, maintained at high level after fertilization and declined sharply afterwards. CHD1 mRNA level was partially decreased in response to alpha-amanitin (RNA polymerase II inhibitor) treatment, suggesting that CHD1 mRNA in eight-cell embryos is of both maternal and zygotic origin. Results of siRNA-mediated silencing of CHD1 in bovine early embryos demonstrated that the percentages of embryos developing to the 8- to 16-cell and blastocyst stages were both significantly reduced. However, expression of NANOG (inner cell mass marker) and CDX2 (trophectoderm marker) were not affected in CHD1 knockdown blastocysts. In addition, we found that histone variant H3.3 immunostaining is altered in CHD1 knockdown embryos. Knockdown of H3.3 using siRNA resulted in a similar phenotype to CHD1-ablated embryos. Collectively, our results demonstrate that CHD1 is required for bovine early development, and suggest that CHD1 may regulate H3.3 deposition during this period.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário , Histonas/metabolismo , Animais , Bovinos , Feminino
19.
Biol Reprod ; 93(4): 86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289443

RESUMO

The TGF-beta-SMAD signaling pathway is involved in regulation of various aspects of female reproduction. However, the intrinsic functional role of SMADs in early embryogenesis remains poorly understood. Previously, we demonstrated that treatment with follistatin, an activin (TGF-beta superfamily ligand)-binding protein, is beneficial for bovine early embryogenesis and specific embryotropic actions of follistatin are dependent on SMAD4. Because SMAD4 is a common SMAD that can bind both SMAD2/3 and SMAD1/5, the objective of this study was to further determine the intrinsic role of SMAD2/3 in the control of early embryogenesis and delineate if embryotropic actions of follistatin in early embryos are SMAD2/3 dependent. By using a combination of pharmacological and small interfering RNA-mediated inhibition of SMAD2/3 signaling in the presence or absence of follistatin treatment, our results indicate that SMAD2 and SMAD3 are both required for bovine early embryonic development and stimulatory actions of follistatin on 8- to 16-cell and that blastocyst rates, but not early cleavage, are muted when SMAD2/3 signaling is inhibited. SMAD2 deficiency also results in reduced expression of the bovine trophectoderm cell-specific gene CTGF. In conclusion, the present work provides evidence supporting a functional role of SMAD2/3 in bovine early embryogenesis and that specific stimulatory actions of follistatin are not observed in the absence of SMAD2/3 signaling.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Folistatina/farmacologia , Proteína Smad2/genética , Proteína Smad3/genética , Animais , Bovinos , Fator de Crescimento do Tecido Conjuntivo/genética , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro , Gravidez , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
20.
Anim Reprod Sci ; 158: 109-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26024964

RESUMO

The objectives of this study were to investigate the potential effects of 1α,25-(OH)2VD3 (biologically active form of Vitamin D) on basal and LH-induced testosterone production and mitochondrial dehydrogenase activity in Leydig cells from immature and mature rams cultured in vitro. Leydig cells were isolated from testes of immature and mature rams, treated without (control) or with increasing concentrations of LH (1, 10, 100ng/ml) and/or 1α,25-(OH)2VD3 (1, 10, 100nM). After 24h, concentrations of testosterone in culture media were measured. After 96h, mitochondrial dehydrogenase activity in Leydig cells were measured. In immature and mature ram Leydig cells, treatment with 10 and 100ng/ml LH increased testosterone production and mitochondrial dehydrogenase activity. Treatment with 1α,25-(OH)2VD3 in the absence of LH did not increase testosterone production, but 10 and 100nM 1α,25-(OH)2VD3 increased LH induced testosterone production for both immature and mature ram Leydig cells. Treatment with all doses of 1α,25-(OH)2VD3 in the absence of LH and 10 and 100ng/ml LH in the absence of 1α,25-(OH)2VD3 increased mitochondrial dehydrogenase activity for cultured Leydig cells from immature and mature rams and 1 and 10nM 1α,25-(OH)2VD3 treatment enhanced the LH induced increase in mitochondrial dehydrogenase activity. Result demonstrate Vitamin D3 induced regulation of function of Leydig cells from immature and mature rams cultured in the presence or absence of LH and support a potential role for Vitamin D3 in regulation of gonadal function in rams.


Assuntos
Hormônio Luteinizante/farmacologia , Mitocôndrias/enzimologia , Oxirredutases/metabolismo , Ovinos/fisiologia , Testosterona/metabolismo , Vitamina D/farmacologia , Animais , Células Cultivadas , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...