Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(9): 1867-1876, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32096402

RESUMO

Inorganic lead halide perovskite nanostructures show promise as the active layers in photovoltaics, light emitting diodes, and other optoelectronic devices. They are robust in the presence of oxygen and water, and the electronic structure and dynamics of these nanostructures can be tuned through quantum confinement. Here we create aligned bundles of CsPbBr3 nanowires with widths resulting in quantum confinement of the electronic wave functions and subject them to ultrafast microscopy. We directly image rapid one-dimensional exciton diffusion along the nanowires, and we measure an exciton trap density of roughly one per nanowire. Using transient absorption microscopy, we observe a polarization-dependent splitting of the band edge exciton line, and from the polarized fluorescence of nanowires in solution, we determine that the exciton transition dipole moments are anisotropic in strength. Our observations are consistent with a model in which splitting is driven by shape anisotropy in conjunction with long-range exchange.

2.
J Am Chem Soc ; 140(6): 2326-2335, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29392936

RESUMO

Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...