Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Med Phys ; 50(3): e25-e52, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512742

RESUMO

Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.


Assuntos
Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Controle de Qualidade , Imagens de Fantasmas
2.
Biomed Phys Eng Express ; 8(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874300

RESUMO

Purpose.Radiation epidemiology studies of childhood cancer survivors treated in the pre-computed tomography (CT) era reconstruct the patients' treatment fields on computational phantoms. For such studies, the phantoms are commonly scaled to age at the time of radiotherapy treatment because age is the generally available anthropometric parameter. Several reference size phantoms are used in such studies, but reference size phantoms are only available at discrete ages (e.g.: newborn, 1, 5, 10, 15, and Adult). When such phantoms are used for RT dose reconstructions, the nearest discrete-aged phantom is selected to represent a survivor of a specific age. In this work, we (1) conducted a feasibility study to scale reference size phantoms at discrete ages to various other ages, and (2) evaluated the dosimetric impact of using exact age-scaled phantoms as opposed to nearest age-matched phantoms at discrete ages.Methods.We have adopted the University of Florida/National Cancer Institute (UF/NCI) computational phantom library for our studies. For the feasibility study, eight male and female reference size UF/NCI phantoms (5, 10, 15, and 35 years) were downscaled to fourteen different ages which included next nearest available lower discrete ages (1, 5, 10 and 15 years) and the median ages at the time of RT for Wilms' tumor (3.9 years), craniospinal (8.0 years), and all survivors (9.1 years old) in the Childhood Cancer Survivor Study (CCSS) expansion cohort treated with RT. The downscaling was performed using our in-house age scaling functions (ASFs). To geometrically validate the scaling, Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Euclidean distance (ED) were calculated between the scaled and ground-truth discrete-aged phantom (unscaled UF/NCI) for whole-body, brain, heart, liver, pancreas, and kidneys. Additionally, heights of the scaled phantoms were compared with ground-truth phantoms' height, and the Centers for Disease Control and Prevention (CDC) reported 50th percentile height. Scaled organ masses were compared with ground-truth organ masses. For the dosimetric assessment, one reference size phantom and seventeen body-size dependent 5-year-old phantoms (9 male and 8 female) of varying body mass indices (BMI) were downscaled to 3.9-year-old dimensions for two different radiation dose studies. For the first study, we simulated a 6 MV photon right-sided flank field RT plan on a reference size 5-year-old and 3.9-year-old (both of healthy BMI), keeping the field size the same in both cases. Percent of volume receiving dose ≥15 Gy (V15) and the mean dose were calculated for the pancreas, liver, and stomach. For the second study, the same treatment plan, but with patient anatomy-dependent field sizes, was simulated on seventeen body-size dependent 5- and 3.9-year-old phantoms with varying BMIs. V15, mean dose, and minimum dose received by 1% of the volume (D1), and by 95% of the volume (D95) were calculated for pancreas, liver, stomach, left kidney (contralateral), right kidney, right and left colons, gallbladder, thoracic vertebrae, and lumbar vertebrae. A non-parametric Wilcoxon rank-sum test was performed to determine if the dose to organs of exact age-scaled and nearest age-matched phantoms were significantly different (p < 0.05).Results.In the feasibility study, the best DSCs were obtained for the brain (median: 0.86) and whole-body (median: 0.91) while kidneys (median: 0.58) and pancreas (median: 0.32) showed poorer agreement. In the case of MDA and ED, whole-body, brain, and kidneys showed tighter distribution and lower median values as compared to other organs. For height comparison, the overall agreement was within 2.8% (3.9 cm) and 3.0% (3.2 cm) of ground-truth UF/NCI and CDC reported 50th percentile heights, respectively. For mass comparison, the maximum percent and absolute differences between the scaled and ground-truth organ masses were within 31.3% (29.8 g) and 211.8 g (16.4%), respectively (across all ages). In the first dosimetric study, absolute difference up to 6% and 1.3 Gy was found for V15and mean dose, respectively. In the second dosimetric study, V15and mean dose were significantly different (p < 0.05) for all studied organs except the fully in-beam organs. D1and D95were not significantly different for most organs (p > 0.05).Conclusion.We have successfully evaluated our ASFs by scaling UF/NCI computational phantoms from one age to another age, which demonstrates the feasibility of scaling any CT-based anatomy. We have found that dose to organs of exact age-scaled and nearest aged-matched phantoms are significantly different (p < 0.05) which indicates that using the exact age-scaled phantoms for retrospective dosimetric studies is a better approach.


Assuntos
Fótons , Radiometria , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas , Radiometria/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
3.
Int J Radiat Oncol Biol Phys ; 112(4): 1004-1011, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780973

RESUMO

PURPOSE: This study aimed to highlight the value and key findings of on-site proton audits. METHODS AND MATERIALS: The authors performed 38 on-site measurement-based peer reviews of proton centers participating in National Cancer Institute-funded clinical trials. The reviews covered beam calibration, lateral and depth measurements, mechanical checks, treatment planning and clinical practice, and quality assurance (QA) practices. Program deficiencies were noted, and recommendations were made about ways institutions could improve their practices. RESULTS: Institutions received an average of 3 (range, 1-8) recommendations for practice improvements. The number of deficiencies did not decrease over time, highlighting the continued need for this type of peer review. The most common deficiencies were for Task Group-recommended QA compliance (97% of centers), computed tomography number (CTN) to relative linear stopping power conversion (59%), and QA procedures (53%). In addition, 32% of institutions assessed failed at least 1 lateral beam profile measurement (<90% of pixels passing 3% [global]/3 mm; 10% threshold), despite passing internal QA measurements. These failures occurred for several different plan configurations (large, small, shallow, and deep targets) and at different depths in the beam path (proximal to target, central, and distal). CTN to relative linear stopping power conversion curves showed deviations at low, mid, and high CTNs and highlighted areas of inconsistency between proton centers, with many centers falling outside of 2 sigma of the mean curve of their peers. All deficiencies from the peer review were discussed with the institutions, and many implemented dosimetric treatment planning and practice changes to improve the accuracy of their system and consistency with other institutions. CONCLUSIONS: This peer review program has been integral in confirming and promoting consistency and best practice across proton centers for clinical trials, minimizing deviations for outcomes data.


Assuntos
Auditoria Clínica , Terapia com Prótons , Garantia da Qualidade dos Cuidados de Saúde , Calibragem , Humanos , National Cancer Institute (U.S.) , Terapia com Prótons/métodos , Terapia com Prótons/normas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estados Unidos
4.
Radiother Oncol ; 166: 8-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748857

RESUMO

BACKGROUND & PURPOSE: To evaluate treatment planning system (TPS) beam modeling parameters as contributing factors to IMRT audit performance. MATERIALS & METHODS: We retrospectively analyzed IROC Houston phantom audit performance and concurrent beam modeling survey responses from 337 irradiations performed between August 2017 and November 2019. Irradiation results were grouped based on the reporting of typical or atypical beam modeling parameter survey responses (<10th or >90th percentile values), and compared for passing versus failing (>7% error) or "poor" (>5% error) irradiation status. Additionally, we assessed the impact on the planned dose distribution from variations in modeling parameter value. Finally, we estimated the overall impact of beam modeling parameter variance on dose calculations, based on reported community variations. RESULTS: Use of atypical modeling parameters were more frequently seen with failing phantom audit results (p = 0.01). Most pronounced was for Eclipse AAA users, where phantom irradiations with atypical values of dosimetric leaf gap (DLG) showed a greater incidence of both poor-performing (p = 0.048) and failing phantom audits (p = 0.014); and in general, DLG value was correlated with dose calculation accuracy (r = 0.397, p < 0.001). Manipulating TPS parameters induced systematic changes in planned dose distributions which were consistent with prior observations of how failures manifest. Dose change estimations based on these dose calculations agreed well with true dosimetric errors identified. CONCLUSION: Atypical TPS beam modeling parameters are associated with failing phantom audits. This is identified as an important factor contributing to the observed failing phantom results, and highlights the need for accurate beam modeling.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
5.
Int J Radiat Oncol Biol Phys ; 111(5): 1155-1164, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34352289

RESUMO

PURPOSE: The aim of this study was to examine current practice patterns in pediatric total body irradiation (TBI) techniques among COG member institutions. METHODS AND MATERIALS: Between November 2019 and February 2020, a questionnaire containing 52 questions related to the technical aspects of TBI was sent to medical physicists at 152 COG institutions. The questions were designed to obtain technical information on commonly used TBI treatment techniques. Another set of 9 questions related to the clinical management of patients undergoing TBI was sent to 152 COG member radiation oncologists at the same institutions. RESULTS: Twelve institutions were excluded because TBI was not performed in their institutions. A total of 88 physicists from 88 institutions (63% response rate) and 96 radiation oncologists from 96 institutions (69% response rate) responded. The anterior-posterior/posterior-anterior (AP/PA) technique was the most common technique reported (49 institutions [56%]); 44 institutions (50%) used the lateral technique, and 14 (16%) used volumetric modulated arc therapy or tomotherapy. Midplane dose rates of 6 to 15 cGy/min were most commonly used. The most common specification for lung dose was the midlung dose for both AP/PA techniques (71%) and lateral techniques (63%). Almost all physician responders agreed with the need to refine current TBI techniques, and 79% supported the investigation of new TBI techniques to further lower the lung dose. CONCLUSIONS: There was no consistency in the practice patterns, methods for dose measurement, and reporting of TBI doses among COG institutions. The lack of standardization precludes meaningful correlation between TBI doses and clinical outcomes including disease control and normal tissue toxicity. The COG radiation oncology discipline is currently undertaking several steps to standardize the practice and dose reporting of pediatric TBI using detailed questionnaires and phantom-based credentialing for all COG centers.


Assuntos
Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Criança , Humanos , Pulmão , Inquéritos e Questionários , Irradiação Corporal Total
6.
Adv Radiat Oncol ; 6(4): 100683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33824935

RESUMO

PURPOSE: To provide a series of suggestions for other Medical Physics practices to follow in order to provide effective radiation therapy treatments during the COVID-19 pandemic. METHODS AND MATERIALS: We reviewed our entire Radiation Oncology infrastructure to identify a series of workflows and policy changes that we implemented during the pandemic that yielded more effective practices during this time. RESULTS: We identified a structured list of several suggestions that can help other Medical Physics practices overcome the challenges involved in delivering high quality radiotherapy services during this pandemic. CONCLUSIONS: Our facility encompasses 4 smaller Houston Area Locations (HALs), a main campus with 8 distinct services based on treatment site (ie. Thoracic, Head and Neck, Breast, Gastrointestinal, Gynecology, Genitourinary, Hematologic Malignancies, Melanoma and Sarcoma and Central Nervous System/Pediatrics), a Proton Center facility, an MR-Linac, a Gamma Knife clinic and an array of brachytherapy services. Due to the scope of our services, we have gained experience in dealing with the rapidly changing pandemic effects on our clinical practice. Our paper provides a resource to other Medical Physics practices in search of workflows that have been resilient during these challenging times.

7.
Pediatr Blood Cancer ; 68 Suppl 2: e28609, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818891

RESUMO

The Children's Oncology Group (COG) has a strong quality assurance (QA) program managed by the Imaging and Radiation Oncology Core (IROC). This program consists of credentialing centers and providing real-time management of each case for protocol compliant target definition and radiation delivery. In the International Society of Pediatric Oncology (SIOP), the lack of an available, reliable online data platform has been a challenge and the European Society for Paediatric Oncology (SIOPE) quality and excellence in radiotherapy and imaging for children and adolescents with cancer across Europe in clinical trials (QUARTET) program currently provides QA review for prospective clinical trials. The COG and SIOP are fully committed to a QA program that ensures uniform execution of protocol treatments and provides validity of the clinical data used for analysis.


Assuntos
Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia (Especialidade)/normas , Planejamento da Radioterapia Assistida por Computador/normas , Adolescente , Criança , Humanos
8.
Phys Imaging Radiat Oncol ; 17: 111-116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33898789

RESUMO

BACKGROUND AND PURPOSE: Artefacts caused by dental amalgam implants present a common challenge in computed tomography (CT) and therefore treatment planning dose calculations. The goal was to perform a quantitative image quality analysis of our Artifact Management for Proton Planning (AMPP) algorithm which used gantry tilts for managing metal artefacts on Head and Neck (HN) CT scans and major vendors' commercial approaches. MATERIALS AND METHODS: Metal artefact reduction (MAR) algorithms were evaluated using an anthropomorphic phantom with a removable jaw for the acquisition of images with and without (baseline) metal artifacts. AMPP made use of two angled CT scans to generate one artifact-reduced image set. The MAR algorithms from four vendors were applied to the images with artefacts and the analysis was performed with respective baselines. Planar HU difference maps and volumetric HU differences were analyzed. RESULTS: AMPP algorithm outperformed all vendors' commercial approaches in the elimination of artefacts in the oropharyngeal region, showing the lowest percent of pixels outside +- 20 HU criteria, 4%; whereas those in the MAR-corrected images ranged from 26% to 67%. In the region of interest within the affected slices, the commercial MAR algorithms showed inconsistent performance, whereas the AMPP algorithm performed consistently well throughout the phantom's posterior region. CONCLUSIONS: A novel MAR algorithm was evaluated and compared to four commercial algorithms using an anthropomorphic phantom. Unanimously, the analysis showed the AMPP algorithm outperformed vendors' commercial approaches, showing the potential to be broadly implemented, improve visualizations in patient anatomy and provide accurate HU information.

9.
Radiother Oncol ; 159: 106-111, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741471

RESUMO

PURPOSE: To promote consistency in clinical trials by recommending a uniform framework as it relates to radiation transport and dose calculation in water versus in medium. METHODS: The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group (GHG; www.rtqaharmonization.org) compared the differences between dose to water in water (Dw,w), dose to water in medium (Dw,m), and dose to medium in medium (Dm,m). This was done based on a review of historical frameworks, existing literature and standards, clinical issues in the context of clinical trials, and the trajectory of radiation dose calculations. Based on these factors, recommendations were developed. RESULTS: No framework was found to be ideal or perfect given the history, complexity, and current status of radiation therapy. Nevertheless, based on the evidence available, the GHG established a recommendation preferring dose to medium in medium (Dm,m). CONCLUSIONS: Dose to medium in medium (Dm,m) is the preferred dose calculation and reporting framework. If an institution's planning system can only calculate dose to water in water (Dw,w), this is acceptable.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Água , Consenso , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
10.
Sci Rep ; 11(1): 3973, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597610

RESUMO

Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients' outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging (MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI radiomics phantom. The variability of the radiomics features with different scanning parameters and repeatability measured using a test-retest scheme were evaluated using the coefficient of variation and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability measures, the features were categorized into three groups: large, intermediate, and small variation. For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). Our results demonstrated that various radiomics features are dependent on different scanning parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The results of this study will assist current and future MRI radiomics studies.

11.
Med Phys ; 48(1): 445-455, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33176003

RESUMO

PURPOSE: To compare the dosimetric impact of all major commercial vendors' metal artifact reduction (MAR) algorithms to one another, as well as to a novel in-house technique (AMPP) using an anthropomorphic head phantom. MATERIALS AND METHODS: The phantom was an Alderson phantom, modified to allow for artifact-filled and baseline (no artifacts) computed tomography (CT) scans using teeth capsules made with metal amalgams or bone-equivalent materials. It also included a cylindrical insert that was accessible from the bottom of the neck and designed to introduce soft tissue features into the phantom that were used in the analysis. The phantom was scanned with the metal teeth in place using each respective vendor's MAR algorithm: OMAR (Philips), iMAR (Siemens), SEMAR (Canon), and SmartMAR (GE); the AMPP algorithm was designed in-house. Uncorrected and baseline (bone-equivalent teeth) image sets were also acquired using a Siemens scanner. Proton spot scanning treatment plans were designed on the baseline image set for five targets in the phantom. Once optimized, the proton beams were copied onto the different artifact-corrected image sets, with no reoptimization of the beams' parameters, to evaluate dose distribution differences in the different MAR-corrected and -uncorrected image sets. Dose distribution differences were evaluated by comparing dose-volume histogram (DVH) metrics, including planning target volume D95 and clinical target volume D99 coverages, V100, D0.03cc, and heterogeneity indexes, along with a qualitative and water equivalent thickness (WET) analysis. RESULTS: Uncorrected CT metal artifacts and commercial MAR algorithms negatively impacted the proton dose distributions of all five target shapes and locations in an inconsistent manner, sometimes overdosing by as much as 11.1% (D0.03) or underdosing by as much as 11.7% (V100) the planning target volumes. The AMPP-corrected images, however, provided dose distributions that consistently agreed with the baseline dose distribution. The dosimetry results also suggest that the commercial MAR algorithms' performances varied more with target location and less with target shape. Once relocated further from the metal, the target showed dose distributions that agreed more with the baseline for all commercial solutions, improving the overdosing by as much as 6%, implying inadequate HU correction from commercial MAR algorithms. In comparison to the baseline, HU profile shapes were considerably altered by commercial algorithms and reference values showed differences that represent stopping power percentage differences of 2.7-10%. The AMPP algorithm plans showed the smallest WET differences with the baseline (0.06 cm on average), while the commercial image sets created differences that ranged from 0.11 to 0.54 cm. CONCLUSIONS: Computed tomography metal artifacts negatively impacted proton dose distributions on all five targets analyzed. The commercial MAR solutions performed inconsistently throughout all targets compared to the metal-free baseline. A lack of CTV coverage and an increased number of hotspots were observed throughout all commercial solutions. Dose distribution errors were related to the proximity to the artifacts, demonstrating the inability of commercial techniques to adequately correct severe artifacts. In contrast, AMPP consistently showed dose distributions that best matched the baseline, likely because it makes use of accurate HU information, as opposed to interpolated data like commercial algorithms.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Algoritmos , Artefatos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
12.
Pract Radiat Oncol ; 11(3): e322-e328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33271351

RESUMO

PURPOSE: Our purpose was to analyze and classify the patterns of failure for irradiations of the Imaging and Radiation Oncology Core photon liver phantom. METHODS AND MATERIALS: Imaging and Radiation Oncology Core's anthropomorphic liver phantom simulates multitarget liver disease with respiratory motion. Two hundred forty-nine liver phantom results from 2013 to 2019 were analyzed. Phantom irradiations that failed were categorized by the error attributed to the failure. Phantom results were also compared by demographic data, such as machine type, treatment planning system, motion management technique, number of isocenters, and whether the phantom was a first time or repeat irradiation. RESULTS: The failure rate for the liver phantom was 27%. From the 68 irradiations that did not pass, 5 failure modes were identified. The most common failure mode was localization errors in the direction of motion, with over 50% of failures attributed to this mode. The second-most common failure mode was systematic dose errors. The internal target volume technique performed worse than other motion management techniques. Failure modes were different by the number of isocenters used, with multi-isocenter irradiations having more failure modes in a single phantom irradiation. CONCLUSIONS: Motion management techniques and proper alignment of moving targets play a large role in the successful irradiation of the liver phantom. These errors should be examined to ensure accurate patient treatment for liver disease or other sites where multiple moving targets are present.


Assuntos
Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador
13.
Front Oncol ; 10: 602607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330102

RESUMO

PURPOSE: To assess stereotactic radiotherapy (SRT)/stereotactic body radiotherapy (SBRT) practices by polling clinics participating in multi-institutional clinical trials. METHODS: The NRG Oncology Medical Physics Subcommittee distributed a survey consisting of 23 questions, which covered general technologies, policies, and procedures used in the Radiation Oncology field for the delivery of SRT/SBRT (9 questions), and site-specific questions for brain SRT, lung SBRT, and prostate SBRT (14 questions). Surveys were distributed to 1,996 radiotherapy institutions included on the membership rosters of the five National Clinical Trials Network (NCTN) groups. Patient setup, motion management, target localization, prescriptions, and treatment delivery technique data were reported back by 568 institutions (28%). RESULTS: 97.5% of respondents treat lung SBRT patients, 77.0% perform brain SRT, and 29.1% deliver prostate SBRT. 48.8% of clinics require a physicist present for every fraction of SBRT, 18.5% require a physicist present for the initial SBRT fraction only, and 14.9% require a physicist present for the entire first fraction, including set-up approval for all subsequent fractions. 55.3% require physician approval for all fractions, and 86.7% do not reposition without x-ray imaging. For brain SRT, most institutions (83.9%) use a planning target volume (PTV) margin of 2 mm or less. Lung SBRT PTV margins of 3 mm or more are used in 80.6% of clinics. Volumetric modulated arc therapy (VMAT) is the dominant delivery method in 62.8% of SRT treatments, 70.9% of lung SBRT, and 68.3% of prostate SBRT. CONCLUSION: This report characterizes SRT/SBRT practices in radiotherapy clinics participating in clinical trials. Data made available here allows the radiotherapy community to compare their practice with that of other clinics, determine what is achievable, and assess areas for improvement.

14.
Radiother Oncol ; 153: 163-171, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075392

RESUMO

BACKGROUND AND PURPOSE: Radiation therapy is a risk factor for late cardiac disease in childhood cancer survivors. Several pediatric cohort studies have established whole heart dose and dose-volume response models. Emerging data suggest that dose to cardiac substructures may be more predictive than whole heart metrics. In order to develop substructure dose-response models, the heart model previously used for pediatric cohort dosimetry needed enhancement and substructure delineation. METHODS: To enhance our heart model, we combined the age-scalable capability of our computational phantom with the anatomically-delineated (with substructures) heart models from an international humanoid phantom series. We examined cardiac volume similarity/overlap between registered age-scaled phantoms (1, 5, 10, and 15 years) with the enhanced heart model and the reference phantoms of the same age; dice similarity coefficient (DSC) and overlap coefficient (OC) were calculated for each matched pair. To assess the accuracy of our enhanced heart model, we compared doses from computed tomography-based planning (ground truth) with reconstructed heart doses. We also compared doses calculated with the prior and enhanced heart models for a cohort of nearly 5000 childhood cancer survivors. RESULTS: We developed a realistic cardiac model with 14-substructures, scalable across a broad age range (1-15 years); average DSC and OC were 0.84 ± 0.05 and 0.90 ± 0.05, respectively. The average percent difference between reconstructed and ground truth mean heart doses was 4.2%. In the cohort dosimetry analysis, dose and dose-volume metrics were approximately 10% lower on average when the enhanced heart model was used for dose reconstructions. CONCLUSION: We successfully developed and validated an anatomically realistic age-scalable cardiac model that can be used to establish substructure dose-response models for late cardiac disease in childhood cancer survivor cohorts.


Assuntos
Sobreviventes de Câncer , Neoplasias , Adolescente , Criança , Pré-Escolar , Coração/diagnóstico por imagem , Humanos , Lactente , Neoplasias/radioterapia , Imagens de Fantasmas , Radiometria
15.
Pediatr Blood Cancer ; 67(10): e28629, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776500

RESUMO

This report by the Radiation Oncology Discipline of Children's Oncology Group (COG) describes the practice patterns of pediatric image-guided radiotherapy (IGRT) based on a member survey and provides practice recommendations accordingly. The survey comprised of 11 vignettes asking clinicians about their recommended treatment modalities, IGRT preferences, and frequency of in-room verification. Technical questions asked physicists about imaging protocols, dose reduction, setup correction, and adaptive therapy. In this report, the COG Radiation Oncology Discipline provides an IGRT modality/frequency decision tree and the expert guidelines for the practice of ionizing image guidance in pediatric radiotherapy patients.


Assuntos
Neoplasias/radioterapia , Guias de Prática Clínica como Assunto/normas , Padrões de Prática Médica/normas , Radioterapia (Especialidade)/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Criança , Humanos , Neoplasias/patologia , Dosagem Radioterapêutica
16.
Med Phys ; 47(10): 5250-5259, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32677052

RESUMO

PURPOSE: Treatment planning system (TPS) dose calculations have previously been shown to be sensitive to modeling errors, especially when treating with complex strategies like intensity-modulated radiation therapy (IMRT). This work investigates the dosimetric impact of several dosimetric and nondosimetric beam modeling parameters, based on their distribution in the radiotherapy community, in two commercial TPSs in order to understand the realistic potential for dose deviations and their clinical effects. METHODS AND MATERIALS: Beam models representing standard 120-leaf Varian Clinac-type machines were developed in Eclipse 13.5 (AAA algorithm) and RayStation 9A (v8.99, collapsed-cone algorithm) based upon median values of dosimetric measurements from Imaging and Radiation Oncology Core (IROC) Houston site visit data and community beam modeling parameter survey data in order to represent a baseline linear accelerator. Five clinically acceptable treatment plans (three IMRT, two VMAT) were developed for the IROC head and neck phantom. Dose distributions for each plan were recalculated after individually modifying parameters of interest (e.g., MLC transmission, percent depth doses [PDDs], and output factors) according to the 2.5th to 97.5th percentiles of community survey and machine performance data to encompass the realistic extent of variance in the radiotherapy community. The resultant dose distributions were evaluated by examining relative changes in average dose for thermoluminescent dosimeter (TLD) locations across the two target volumes and organ at risk (OAR). Interplay was also examined for parameters generating changes in target dose greater than 1%. RESULTS: For Eclipse, dose calculations were sensitive to changes in the dosimetric leaf gap (DLG), which resulted in differences from -5% to +3% to the targets relative to the baseline beam model. Modifying the MLC transmission factor introduced differences up to ± 1%. For RayStation, parameters determining MLC behaviors likewise contributed substantially; the MLC offset introduced changes in dose from -4% to +7%, and the MLC transmission caused changes of -4% to +2%. Among the dosimetric qualities examined, changes in PDD implementation resulted in the most substantial changes, but these were only up to ±1%. Other dosimetric factors had <1% impact on dose accuracy. Interplay between impactful parameters was found to be minimal. CONCLUSION: Factors related to the modeling of the MLC, particularly relating to the leaf offset, can cause clinically significant changes in the calculated dose for IMRT and VMAT plans. This should be of concern to the radiotherapy community because the clinical effects of poor TPS commissioning were based on reported data from clinically implemented beam models. These results further reinforce that dose errors caused by poor TPS calculations are often involved in IROC phantom failures.


Assuntos
Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
J Appl Clin Med Phys ; 21(8): 120-130, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506820

RESUMO

Dental amalgams are a common source of artifacts in head and neck (HN) images. Commercial artifact reduction techniques have been offered, but are substantially ineffectual at reducing artifacts from dental amalgams, can produce additional artifacts, provide inaccurate HU information, or require extensive computation time, and thus offer limited clinically utility. The goal of this work was to define and validate a novel algorithm and provide a phantom-based testing as proof of principle. An initial clinical comparison to a vendor's current solution was also performed. The algorithm uses two-angled CT scans in order to generate a single image set with minimal artifacts posterior to the metal implants. The algorithm was evaluated using a phantom simulating a HN patient with dental fillings. Baseline (no artifacts) geometrical measurements of the phantom were taken in the anterior-posterior, left-right, and superior-inferior directions and compared to the metal-corrected images using our algorithm to evaluate possible distortion from application of the algorithm. Mean HU numbers were also compared between the baseline scan and corrected image sets. A similar analysis was performed on the vendor's algorithm for comparison. The algorithm developed in this work successfully preserved the image geometry and HU and corrected the CT metal artifacts in the region posterior to the metal. The average total distortion for all gantry angles in the AP, LR, and SI directions was 0.17, 0.12, and 0.14 mm, respectively. The HU measurements showed significant consistency throughout the different reconstructed images when compared to the baseline image sets. The vendor's algorithm also showed no geometrical distortion but performed inferiorly in the HU number analysis compared to our technique. Our novel metal artifact management algorithm, using CT gantry angle tilts, provides a promising technique for clinical management of metal artifacts from dental amalgam.


Assuntos
Algoritmos , Artefatos , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
18.
J Appl Clin Med Phys ; 21(7): 70-76, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32351006

RESUMO

PURPOSE: To create a snapshot of common practices for 3D-CRT and intensity-modulated radiation therapy (IMRT) QA through a large-scale survey and compare to TG-218 recommendations. METHODS: A survey of 3D-CRT and IMRT QA was constructed at and distributed by the IROC-Houston QA center to all institutions monitored by IROC (n = 2,861). The first part of the survey asked about methods to check dose delivery for 3D-CRT. The bulk of the survey focused on IMRT QA, inquiring about treatment modalities, standard tools used to verify planned dose, how assessment of agreement is calculated and the comparison criteria used, and the strategies taken if QA fails. RESULTS: The most common tools for dose verification were a 2D diode array (52.8%), point(s) measurement (39.0%), EPID (27.4%), and 2D ion chamber array (23.9%). When IMRT QA failed, the highest average rank strategy utilized was to remeasure with the same setup, which had an average position ranking of 1.1 with 90.4% of facilities employing this strategy. The second highest average ranked strategy was to move to a new calculation point and remeasure (54.9%); this had an average ranking of 2.1. CONCLUSION: The survey provided a snapshot of the current state of dose verification for IMRT radiotherapy. The results showed variability in approaches and that work is still needed to unify and tighten criteria in the medical physics community, especially in reference to TG-218's recommendations.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Pract Radiat Oncol ; 10(5): 372-381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413413

RESUMO

PURPOSE: Our purpose was to investigate and classify the reasons why institutions fail the Imaging and Radiation Oncology Core (IROC) stereotactic body radiation therapy (SBRT) spine and moving lung phantoms, which are used to credential institutions for clinical trial participation. METHODS AND MATERIALS: All IROC moving lung and SBRT spine phantom irradiation failures recorded from January 2012 to December 2018 were evaluated in this study. A failure was a case where the institution did not meet the established IROC criteria for agreement between planned and delivered dose. We analyzed the reports for all failing irradiations, including point dose disagreement, dose profiles, and gamma analyses. Classes of failure patterns were created and used to categorize each instance. RESULTS: There were 158 failing cases analyzed: 116 of 1052 total lung irradiations and 42 of 263 total spine irradiations. Seven categories were required to describe the lung phantom failures, whereas 4 were required for the spine. Types of errors present in both phantom groups included systematic dose and localization errors. Fifty percent of lung failures were due to a superior-inferior localization error, that is, error in the direction of major motion. Systematic dose errors, however, contributed to only 22% of lung failures. In contrast, the majority (60%) of spine phantom failures were due to systematic dose errors, with localization errors (in any direction) accounting for only 14% of failures. CONCLUSIONS: There were 2 distinct patterns of failure between the IROC moving lung and SBRT spine phantoms. The majority of the lung phantom failures were due to localization errors, whereas the spine phantom failures were largely attributed to systematic dose errors. Both of these errors are clinically relevant and could manifest as errors in patient cases. These findings highlight the value of independent end-to-end dosimetry audits and can help guide the community in improving the quality of radiation therapy by focusing attention on where errors manifest in the community.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
20.
Med Phys ; 47(9): 4502-4508, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32452027

RESUMO

PURPOSE: Between July 2013 and August 2019, 22% of the imaging and radiation oncology core (IROC) spine, and 15% of the moving lung phantom irradiations have failed to meet established acceptability criteria. The spine phantom simulates a highly modulated stereotactic body radiation therapy (SBRT) case, whereas the lung phantom represents a low-to-none modulation moving target case. In this study, we assessed the contribution of dose calculation errors to these phantom results and evaluated their effects on failure rates. METHODS: We evaluated dose calculation errors by comparing the calculation accuracy of various institutions' treatment planning systems (TPSs) vs IROC-Houston's previously established independent dose recalculation system (DRS). Each calculation was compared with the measured dose actually delivered to the phantom; cases in which the recalculation was more accurate were interpreted as a deficiency in the institution's TPS. A total of 258 phantom irradiation plans (172 lung and 86 spine) were recomputed. RESULTS: Overall, the DRS performed better than the TPSs in 47% of the spine phantom cases. However, the DRS was more accurate in 93% of failing spine phantom cases (with an average improvement of 2.35%), indicating a deficiency in the institution's treatment planning system. Deficiencies in dose calculation accounted for 60% of the overall discrepancy between measured and planned doses among spine phantoms. In contrast, lung phantom DRS calculations were more accurate in only 35% and 42% of all and failing lung phantom cases respectively, indicating that dose calculation errors were not substantially present. These errors accounted for only 30% of the overall discrepancy between measured and planned doses. CONCLUSIONS: Dose calculation errors are common and substantial in IROC spine phantom irradiations, highlighting a major failure mode in this phantom and in clinical treatment management of these cases. In contrast, dose calculation accuracy had only a minimal contribution to failing lung phantom results, indicating that other failure modes drive problems with this phantom and similar clinical treatments.


Assuntos
Radioterapia (Especialidade) , Radioterapia de Intensidade Modulada , Algoritmos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA