Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109585, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623327

RESUMO

Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.

2.
Mol Biol Cell ; 31(20): 2269-2282, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726167

RESUMO

All receptor tyrosine kinases (RTKs) activate similar downstream signaling pathways through a common set of effectors, yet it is not fully understood how different receptors elicit distinct cellular responses to cause cell proliferation, differentiation, or other cell fates. We tested the hypothesis that regulation of SRC family kinase (SFK) signaling by the scaffold protein, PAG1, influences cell fate decisions following RTK activation. We generated a neuroblastoma cell line expressing a PAG1 fragment that lacks the membrane-spanning domain (PAG1TM-) and localized to the cytoplasm. PAG1TM- cells exhibited higher amounts of active SFKs and increased growth rate. PAG1TM- cells were unresponsive to TRKA and RET signaling, two RTKs that induce neuronal differentiation, but retained responses to EGFR and KIT. Under differentiation conditions, PAG1TM- cells continued to proliferate and did not extend neurites or increase ß-III tubulin expression. FYN and LYN were sequestered in multivesicular bodies (MVBs), and dramatically more FYN and LYN were in the lumen of MVBs in PAG1TM- cells. In particular, activated FYN was sequestered in PAG1TM- cells, suggesting that disruption of FYN localization led to the observed defects in differentiation. The results demonstrate that PAG1 directs SFK intracellular localization to control activity and to mediate signaling by RTKs that induce neuronal differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Membrana/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Proteínas de Membrana/genética , Neuritos/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/fisiologia
3.
Sci Signal ; 11(531)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789295

RESUMO

Protein posttranslational modifications (PTMs) have typically been studied independently, yet many proteins are modified by more than one PTM type, and cell signaling pathways somehow integrate this information. We coupled immunoprecipitation using PTM-specific antibodies with tandem mass tag (TMT) mass spectrometry to simultaneously examine phosphorylation, methylation, and acetylation in 45 lung cancer cell lines compared to normal lung tissue and to cell lines treated with anticancer drugs. This simultaneous, large-scale, integrative analysis of these PTMs using a cluster-filtered network (CFN) approach revealed that cell signaling pathways were outlined by clustering patterns in PTMs. We used the t-distributed stochastic neighbor embedding (t-SNE) method to identify PTM clusters and then integrated each with known protein-protein interactions (PPIs) to elucidate functional cell signaling pathways. The CFN identified known and previously unknown cell signaling pathways in lung cancer cells that were not present in normal lung epithelial tissue. In various proteins modified by more than one type of PTM, the incidence of those PTMs exhibited inverse relationships, suggesting that molecular exclusive "OR" gates determine a large number of signal transduction events. We also showed that the acetyltransferase EP300 appears to be a hub in the network of pathways involving different PTMs. In addition, the data shed light on the mechanism of action of geldanamycin, an HSP90 inhibitor. Together, the findings reveal that cell signaling pathways mediated by acetylation, methylation, and phosphorylation regulate the cytoskeleton, membrane traffic, and RNA binding protein-mediated control of gene expression.


Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Pulmonares/metabolismo , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Acetilação , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metilação , Fosforilação , Proteômica , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Células Tumorais Cultivadas
4.
Apoptosis ; 22(3): 393-405, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000054

RESUMO

Regulation of nuclear transport is an essential component of apoptosis. As chemotherapy induced cell death progresses, nuclear transport and the nuclear pore complex (NPC) are slowly disrupted and dismantled. 5-Fluorouracil (5-FU) and the camptothecin derivatives irinotecan and topotecan, are linked to altered nuclear transport of specific proteins; however, their general effects on the NPC and transport during apoptosis have not been characterized. We demonstrate that 5-FU, but not topotecan, increases NPC permeability, and disrupts Ran-mediated nuclear transport before the disruption of the NPC. This increased permeability is dependent on increased cellular calcium, as the Ca2+ chelator BAPTA-AM, abolishes the effect. Furthermore, increased calcium alone was sufficient to disrupt the Ran gradient. Combination treatments of 5-FU with topotecan or irinotecan, similarly disrupted nuclear transport before disassembly of the NPC. In both single and combination treatments nuclear transport was disrupted before caspase 9 activation, indicating that 5-FU induces an early caspase-independent increase in NPC permeability and alteration of nuclear transport. Because Crm1-mediated nuclear export of tumor suppressors is linked to drug resistance we also examined the effect of 5-FU on the nuclear export of a specific target, topoisomerase. 5-FU treatment led to accumulation of topoisomerase in the nucleus and recovered the loss nuclear topoisomerase induced by irinotecan or topotecan, a known cause of drug resistance. Furthermore, 5-FU retains its ability to cause nuclear accumulation of p53 in the presence of irinotecan or topotecan. Our results reveal a new mechanism of action for these therapeutics during apoptosis, opening the door to other potential combination chemotherapies that employ 5-FU as a calcium mediated inhibitor of Crm1-induced nuclear export of tumor suppressors.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/fisiologia , Fluoruracila/farmacologia , Poro Nuclear/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Caspases/metabolismo , Núcleo Celular/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células HeLa , Humanos , Irinotecano , Proteínas de Neoplasias/fisiologia , Permeabilidade , Topotecan/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína ran de Ligação ao GTP/fisiologia
5.
PLoS Comput Biol ; 11(4): e1004130, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25884760

RESUMO

Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Microdomínios da Membrana , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo
6.
J Biol Chem ; 289(34): 23609-28, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006245

RESUMO

Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Reguladoras de Apoptose/genética , Transporte Biológico , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Humanos , Microscopia de Fluorescência , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...