Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 23(10): 1215-1219, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846098

RESUMO

Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-ß (TGF-ß) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes. However, the signaling and mechanism of action of GDF15 are poorly understood owing to the absence of a clearly identified cognate receptor. Here we report that GDNF-family receptor α-like (GFRAL), an orphan member of the GFR-α family, is a high-affinity receptor for GDF15. GFRAL binds to GDF15 in vitro and is required for the metabolic actions of GDF15 with respect to body weight and food intake in vivo in mice. Gfral-/- mice were refractory to the effects of recombinant human GDF15 on body-weight, food-intake and glucose parameters. Blocking the interaction between GDF15 and GFRAL with a monoclonal antibody prevented the metabolic effects of GDF15 in rats. Gfral mRNA is highly expressed in the area postrema of mouse, rat and monkey, in accordance with previous reports implicating this region of the brain in the metabolic actions of GDF15 (refs. 4,5,6). Together, our data demonstrate that GFRAL is a receptor for GDF15 that mediates the metabolic effects of GDF15.


Assuntos
Área Postrema/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Obesidade/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Ingestão de Alimentos/genética , Citometria de Fluxo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , Humanos , Immunoblotting , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície , Redução de Peso/genética
2.
Neurobiol Dis ; 16(1): 220-35, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15207279

RESUMO

Acute phencyclidine induces schizophrenia-like symptoms in healthy humans and psychotic episodes in schizophrenics. Although phencyclidine is known as a N-methyl d-aspartate receptor antagonist (NMDA-R), the molecular events underlying the behavioral symptoms remain largely unknown. Statistical analysis of oligonucleotide microarray data was used to identify phencyclidine-induced alterations in rat cortical gene expression. Acute phencyclidine produced a statistically significant change in 477 genes in rat prefrontal cortex (PFC), a brain area associated with cognitive dysfunction in schizophrenics. Real-time quantitative PCR (RTQ-PCR) confirmed a subset of these changes ranging from -59% to 255% (smallest confirmation: -19%). Subsequent time-course and dose-response studies using RTQ-PCR confirmed and extended the original microarray results. At the molecular level, genes altered by phencyclidine are related to diverse biological processes including stress, inflammatory response, growth and development, neural plasticity and signal transduction. Further analysis, aimed at assessing the relevance of our results to schizophrenia, revealed dysregulation of genes related to: (i) thalamocortical projections, (ii) neurotransmission and neuromodulation, (iii) thyroid hormone activity, (iv) oligodendrocyte linage, (v) brain lipid metabolism, (vi) sleep architecture and (viii) the velocardiofacial syndrome.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fenciclidina/administração & dosagem , Esquizofrenia/genética , Animais , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenciclidina/farmacologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...