Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 396: 94-102, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685289

RESUMO

There is a clear need to develop new approach methodologies (NAMs) that combine in vitro and in silico testing to reduce and replace animal use in chemical risk assessment. Physiologically based kinetic (PBK) models are gaining popularity as NAMs in toxico/pharmacokinetics, but their coverage of complex metabolic pathways occurring in the gut are incomplete. Chemical modification of xenobiotics by the gut microbiome plays a critical role in the host response, for example, by prolonging exposure to harmful metabolites, but there is not a comprehensive approach to quantify this impact on human health. There are examples of PBK models that have implemented gut microbial biotransformation of xenobiotics with the gut as a dedicated metabolic compartment. However, the integration of microbial metabolism and parameterization of PBK models is not standardized and has only been applied to a few chemical transformations. A challenge in this area is the measurement of microbial metabolic kinetics, for which different fermentation approaches are used. Without a standardized method to measure gut microbial metabolism ex vivo/in vitro, the kinetic constants obtained will lead to conflicting conclusions drawn from model predictions. Nevertheless, there are specific cases where PBK models accurately predict systemic concentrations of gut microbial metabolites, offering potential solutions to the challenges outlined above. This review focuses on models that integrate gut microbial bioconversions and use ex vivo/in vitro methods to quantify metabolic constants that accurately represent in vivo conditions.


Assuntos
Microbioma Gastrointestinal , Modelos Biológicos , Xenobióticos , Microbioma Gastrointestinal/fisiologia , Humanos , Xenobióticos/metabolismo , Xenobióticos/farmacocinética , Animais , Cinética , Biotransformação , Simulação por Computador
2.
Nat Metab ; 5(5): 777-788, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165176

RESUMO

Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.


Assuntos
Ácidos Graxos , Metaboloma , Humanos , Masculino , Feminino , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Ácidos Graxos/metabolismo , Intestino Delgado/metabolismo , Fezes/química
3.
Nature ; 617(7961): 581-591, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165188

RESUMO

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Intestinos , Metaboloma , Proteoma , Humanos , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Proteoma/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Fezes/química , Fezes/microbiologia , Fezes/virologia , Intestinos/química , Intestinos/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Intestinos/virologia , Digestão/fisiologia
4.
Phytochemistry ; 202: 113356, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934105

RESUMO

Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond. Bioinformatic analyses indicate that plants lack homologs of the only enzymes known to make a C-F bond, i.e., the Actinomycete flurorinases that form 5'-fluoro-5'-deoxyadenosine from S-adenosylmethionine and fluoride ion. To probe the origin of fluoroacetate in G. bilobum we first showed that fluoroacetate accumulates to millimolar levels in young leaves but not older leaves, stems or roots, that leaf fluoroacetate levels vary >20-fold between individual plants and are not markedly raised by sodium fluoride treatment. Young leaves were fed adenosine-13C-ribose, 13C-serine, or 13C-acetate to test plausible biosynthetic routes to fluoroacetate from S-adenosylmethionine, a C3-pyridoxal phosphate complex, or acetyl-CoA, respectively. Incorporation of 13C into expected metabolites confirmed that all three precursors were taken up and metabolized. Consistent with the bioinformatic evidence against an Actinomycete-type pathway, no adenosine-13C-ribose was converted to 13C-fluoroacetate; nor was the characteristic 4-fluorothreonine product of the Actinomycete pathway detected. Similarly, no 13C from acetate or serine was incorporated into fluoroacetate. While not fully excluding the hypothetical pathways that were tested, these negative labeling data imply that G. bilobum creates the C-F bond by an unprecedented biochemical reaction. Enzyme(s) that mediate such a reaction could be of great value in pharmaceutical and agrochemical manufacturing.


Assuntos
Fluoretação , S-Adenosilmetionina , Fluoracetatos/química , Fluoracetatos/metabolismo , Plantas/metabolismo , Ribose , Serina
5.
mBio ; 13(4): e0163022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862786

RESUMO

Analysis of the genes retained in the minimized Mycoplasma JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool. Finally, we combined metabolomics and cheminformatics approaches to extend the core metabolic map of JCVI-Syn3A to include promiscuous enzymatic reactions and spontaneous side reactions. This extension revealed that several key metabolite damage control systems remain to be identified in JCVI-Syn3A, such as that for methylglyoxal. IMPORTANCE Metabolite damage and repair mechanisms are being increasingly recognized. We present here compelling genetic and biochemical evidence for the universal importance of these mechanisms by demonstrating that stripping a genome down to its barest essentials leaves metabolite damage control systems in place. Furthermore, our metabolomic and cheminformatic results point to the existence of a network of metabolite damage and damage control reactions that extends far beyond the corners of it that have been characterized so far. In sum, there can be little room left to doubt that metabolite damage and the systems that counter it are mainstream metabolic processes that cannot be separated from life itself.


Assuntos
Genoma Bacteriano , Metabolômica , Metabolômica/métodos , Oxirredutases
6.
Nat Methods ; 18(12): 1524-1531, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857935

RESUMO

Compound identification in small-molecule research, such as untargeted metabolomics or exposome research, relies on matching tandem mass spectrometry (MS/MS) spectra against experimental or in silico mass spectral libraries. Most software programs use dot product similarity scores. Here we introduce the concept of MS/MS spectral entropy to improve scoring results in MS/MS similarity searches via library matching. Entropy similarity outperformed 42 alternative similarity algorithms, including dot product similarity, when searching 434,287 spectra against the high-quality NIST20 library. Entropy similarity scores proved to be highly robust even when we added different levels of noise ions. When we applied entropy levels to 37,299 experimental spectra of natural products, false discovery rates of less than 10% were observed at entropy similarity score 0.75. Experimental human gut metabolome data were used to confirm that entropy similarity largely improved the accuracy of MS-based annotations in small-molecule research to false discovery rates below 10%, annotated new compounds and provided the basis to automatically flag poor-quality, noisy spectra.


Assuntos
Biologia Computacional/métodos , Intestinos/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Cromatografia Líquida/métodos , Simulação por Computador , Entropia , Reações Falso-Positivas , Humanos , Metaboloma , Curva ROC , Reprodutibilidade dos Testes , Software
7.
Nat Commun ; 12(1): 6021, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654818

RESUMO

The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remain poorly understood. Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical regions spanning from adolescence to old age. We combine data from three assays and structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging related to myelin remodeling is accompanied by large changes in other metabolic pathways. Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabolically similar. In cerebrum, metabolic correlations markedly weaken between adolescence and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain segregation. We show that metabolic changes can be mapped to existing gene and protein brain atlases. The brain metabolome atlas is publicly available ( https://mouse.atlas.metabolomics.us/ ) and serves as a foundation dataset for future metabolomic studies.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Metaboloma , Animais , Cerebelo/metabolismo , Feminino , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Esfingolipídeos
8.
Food Funct ; 12(19): 9405-9415, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606553

RESUMO

The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.


Assuntos
Intestino Delgado/metabolismo , Metaboloma , Acetaminofen/metabolismo , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Duodeno/metabolismo , Alimentos , Trato Gastrointestinal/metabolismo , Humanos , Jejuno/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Masculino , Refeições , Metabolômica , Pessoa de Meia-Idade , Proteínas/metabolismo , Manejo de Espécimes , Estômago/metabolismo
9.
Sci Total Environ ; 795: 148856, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328946

RESUMO

Plants respond to adverse conditions by activating defense mechanisms that alter metabolism and impact agricultural crop yield. Organic mulching of Camellia oleifera leads to increased oil yield compared to control. In this study, multi-platform untargeted metabolomics and qRT-PCR were used to measure the effects of organic mulching on seed kernel metabolism. Metabolomics analysis revealed that tyrosine, tryptophan, and several flavonoids and polyphenol metabolites were significantly lower in the mulched treatment compared to the control, indicating lower stress levels with mulching. The qRT-PCR analysis showed that EAR, SAD, and CoHCD were up-regulated by mulching, while CT, FAD7, FAD8, CoATS1, SQS, SQE, FATB, and ß-AS were down-regulated. Correlation network analysis was used to integrate data from this multi-omics investigation to analyze the relationships between differentially expressed genes, metabolites, and fruit and soil indicators concerning mulch treatment of C. oleifera.


Assuntos
Camellia , Camellia/genética , Secas , Expressão Gênica , Lipídeos , Sementes
10.
Rapid Commun Mass Spectrom ; 35(5): e9019, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33617101

RESUMO

RATIONALE: N6-Formyl lysine is a well-known modification of histones and other proteins. It can also be formed as a damaged product from direct formylation of free lysine and accompanied by other lysine derivatives such as acetylated or methylated forms. In relation to the activity of cellular repair enzymes in protein turnover and to lysine metabolism, it is important to accurately quantify the overall ratio of modified lysine to free lysine. METHODS: N6-Formyl lysine was quantified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with data collected in a non-targeted manner using positive mode electrospray ionization on a Q-Exactive HF+ Orbitrap mass spectrometer. Studies were performed with lysine and deuterated lysine spiked into protein digests and solvents to investigate the extent of spontaneous formation and matrix effects of formation of N6-formyl lysine. RESULTS: We show that N6-formyl lysine, N2-formyl lysine, N6-acetyl lysine, and N2-acetyl lysine are all formed spontaneously during sample preparation and LC/MS/MS analysis, which complicates quantification of these metabolites in biological samples. N6-Formyl lysine was spontaneously formed and correlated to the concentration of lysine. In the sample matrix of protein digests, 0.03% of lysine was spontaneously converted into N6-formyl lysine, and 0.005% of lysine was converted into N6-formyl lysine in pure run solvent. CONCLUSIONS: Spontaneous formation of N6-formyl lysine, N6-acetyl lysine, N2-formyl lysine, and N2-acetyl lysine needs to be subtracted from biologically formed lysine modifications when quantifying these epimetabolites in biological samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteínas de Escherichia coli/química , Escherichia coli/química , Lisina/química , Espectrometria de Massas em Tandem/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Metabolômica/métodos
11.
Biochem J ; 477(9): 1745-1757, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32301498

RESUMO

Formaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small molecules. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction. The interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic analysis. This analysis associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism. Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds. PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that certain thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochemical genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate.


Assuntos
Endopeptidases , Escherichia coli , Formaldeído/metabolismo , Prolina/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/toxicidade , Genes Bacterianos , Genoma Bacteriano , Tiazolidinas/metabolismo
12.
Mol Nutr Food Res ; 63(24): e1900752, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675161

RESUMO

SCOPE: High sodium and low potassium (HNaLK) intake increases the risk of cardiovascular disease (CVD) and metabolic syndrome. The authors investigate if the dietary minerals interact with the gut microbiota to alter circulating lipid profiles, implicated in CVD and metabolic syndrome. METHODS AND RESULTS: Plasma samples from Wistar rats fed a control or HNaLK diet with or without antibiotic treatment (n = 7 each, a total of 28) are subjected to lipidomics analysis. Lipidomic data are then analyzed using statistical and bioinformatics tools, which detect numerous lipid species altered by the treatments, and consistently demonstrated interactions between the gut microbiota and the HNaLK diet in altering circulating lipids, mainly triglycerides (TGs). Two distinct TG groups differentially regulated by antibiotic treatment are identified. One group (cluster 1), representing the majority of TG species detected, is downregulated, whereas the other group (cluster 2) is upregulated by antibiotic treatment. Interestingly, cluster 2 TGs are also regulated by the diet. Cluster 2 TGs exhibit greater carbon-chain length and double-bond content and include TGs composed of very-long-chain polyunsaturated fatty acids, associated with reduced diabetes risk. CONCLUSION: The HNaLK diet interacts with gut bacteria to alter plasma lipid profiles, which may be related to its health effects.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lipidômica , Potássio na Dieta/administração & dosagem , Sódio na Dieta/administração & dosagem , Triglicerídeos/sangue , Proteína 4 Semelhante a Angiopoietina/sangue , Animais , Antibacterianos/farmacologia , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos Ômega-3/biossíntese , Masculino , Ratos , Ratos Wistar
14.
Metabolites ; 9(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121816

RESUMO

Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC) has generated thousands of mouse knockouts and catalogued their phenotype data. We have acquired metabolomics data from 220 plasma samples from 30 unique mouse gene knockouts and corresponding wildtype mice from the IMPC. To acquire comprehensive metabolomics data, we have used liquid chromatography (LC) combined with mass spectrometry (MS) for detecting polar and lipophilic compounds in an untargeted approach. We have also used targeted methods to measure bile acids, steroids and oxylipins. In addition, we have used gas chromatography GC-TOFMS for measuring primary metabolites. The metabolomics dataset reports 832 unique structurally identified metabolites from 124 chemical classes as determined by ChemRICH software. The GCMS and LCMS raw data files, intermediate and finalized data matrices, R-Scripts, annotation databases, and extracted ion chromatograms are provided in this data descriptor. The dataset can be used for subsequent studies to link genetic variants with molecular mechanisms and phenotypes.

15.
Nat Commun ; 9(1): 3105, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082730

RESUMO

5-Deoxyribose is formed from 5'-deoxyadenosine, a toxic byproduct of radical S-adenosylmethionine (SAM) enzymes. The degradative fate of 5-deoxyribose is unknown. Here, we define a salvage pathway for 5-deoxyribose in bacteria, consisting of phosphorylation, isomerization, and aldol cleavage steps. Analysis of bacterial genomes uncovers widespread, unassigned three-gene clusters specifying a putative kinase, isomerase, and sugar phosphate aldolase. We show that the enzymes encoded by the Bacillus thuringiensis cluster, acting together in vitro, convert 5-deoxyribose successively to 5-deoxyribose 1-phosphate, 5-deoxyribulose 1-phosphate, and dihydroxyacetone phosphate plus acetaldehyde. Deleting the isomerase decreases the 5-deoxyribulose 1-phosphate pool size, and deleting either the isomerase or the aldolase increases susceptibility to 5-deoxyribose. The substrate preference of the aldolase is unique among family members, and the X-ray structure reveals an unusual manganese-dependent enzyme. This work defines a salvage pathway for 5-deoxyribose, a near-universal metabolite.


Assuntos
Bacillus thuringiensis/enzimologia , Desoxirribose/química , S-Adenosilmetionina/química , Aldeído Liases/química , Aldeídos/química , Transporte Biológico , Cristalografia por Raios X , Desoxiadenosinas/química , Escherichia coli/metabolismo , Deleção de Genes , Isomerases/química , Metabolômica , Fenótipo , Fosfotransferases/química , Conformação Proteica , Ribosemonofosfatos/química
16.
J Biol Chem ; 293(21): 8255-8263, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626092

RESUMO

Cellular thiols such as cysteine spontaneously and readily react with the respiratory intermediate fumarate, resulting in the formation of stable S-(2-succino)-adducts. Fumarate-mediated succination of thiols increases in certain tumors and in response to glucotoxicity associated with diabetes. Therefore, S-(2-succino)-adducts such as S-(2-succino)cysteine (2SC) are considered oncometabolites and biomarkers for human disease. No disposal routes for S-(2-succino)-compounds have been reported prior to this study. Here, we show that Bacillus subtilis metabolizes 2SC to cysteine using a pathway encoded by the yxe operon. The first step is N-acetylation of 2SC followed by an oxygenation that we propose results in the release of oxaloacetate and N-acetylcysteine, which is deacetylated to give cysteine. Knockouts of the genes predicted to mediate each step in the pathway lose the ability to grow on 2SC as the sulfur source and accumulate the expected upstream metabolite(s). We further show that N-acetylation of 2SC relieves toxicity. This is the first demonstration of a metabolic disposal route for any S-(2-succino)-compound, paving the way toward the identification of corresponding pathways in other species.


Assuntos
Bacillus subtilis/metabolismo , Cisteína/análogos & derivados , Fumaratos/metabolismo , Metabolômica , Neoplasias/patologia , Óperon , Acetilação , Bacillus subtilis/genética , Cisteína/metabolismo , Neoplasias/genética , Transdução de Sinais
17.
Artigo em Inglês | MEDLINE | ID: mdl-29564145

RESUMO

BACKGROUND: Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS: We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce ß-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION: Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...