Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(4): 043702, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489885

RESUMO

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM. In this article, a laboratory scale system designed to mimic LPBF process conditions while operating at a synchrotron facility is described. The system is implemented with process accurate atmospheric conditions, including an air knife for active vapor plume removal. Significantly, the chamber also incorporates a diagnostic sensor suite that monitors emitted optical, acoustic, and electronic signals during laser processing with coincident x-ray imaging. The addition of the sensor suite enables validation of these industrially compatible single point sensors by detecting pore formation and spatter events and directly correlating the events with changes in the detected signal. Experiments in the Ti-6Al-4V alloy performed at the Stanford Synchrotron Radiation Lightsource using the system are detailed with sufficient sampling rates to probe melt pool dynamics. X-ray imaging captures melt pool dynamics at frame rates of 20 kHz with a 2 µm pixel resolution, and the coincident diagnostic sensor data are recorded at 470 kHz. This work shows that the current system enables the in situ detection of defects during the LPBF process and permits direct correlation of diagnostic signatures at the exact time of defect formation.


Assuntos
Lasers , Síncrotrons , Pós , Radiografia , Raios X
2.
J Chem Phys ; 154(22): 224201, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241189

RESUMO

Machine learning techniques are seeing increased usage for predicting new materials with targeted properties. However, widespread adoption of these techniques is hindered by the relatively greater experimental efforts required to test the predictions. Furthermore, because failed synthesis pathways are rarely communicated, it is difficult to find prior datasets that are sufficient for modeling. This work presents a closed-loop machine learning-based strategy for colloidal synthesis of nanoparticles, assuming no prior knowledge of the synthetic process, in order to show that synthetic discovery can be accelerated despite limited data availability.

3.
Sci Rep ; 10(1): 1981, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029753

RESUMO

Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the ß-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority ß-Ti phase with increased strain at slower cooling rates. The α-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the ß-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials.

4.
Nat Commun ; 10(1): 1987, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040270

RESUMO

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

5.
Rev Sci Instrum ; 89(5): 055101, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864819

RESUMO

In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 µm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 µm area. We also discuss the utility of these measurements for model validation and process improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...