Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(14): 8837-8848, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37280730

RESUMO

Context modulates sensory neural activations enhancing perceptual and behavioral performance and reducing prediction errors. However, the mechanism of when and where these high-level expectations act on sensory processing is unclear. Here, we isolate the effect of expectation absent of any auditory evoked activity by assessing the response to omitted expected sounds. Electrocorticographic signals were recorded directly from subdural electrode grids placed over the superior temporal gyrus (STG). Subjects listened to a predictable sequence of syllables, with some infrequently omitted. We found high-frequency band activity (HFA, 70-170 Hz) in response to omissions, which overlapped with a posterior subset of auditory-active electrodes in STG. Heard syllables could be distinguishable reliably from STG, but not the identity of the omitted stimulus. Both omission- and target-detection responses were also observed in the prefrontal cortex. We propose that the posterior STG is central for implementing predictions in the auditory environment. HFA omission responses in this region appear to index mismatch-signaling or salience detection processes.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/fisiologia , Área de Wernicke , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Mapeamento Encefálico , Percepção Auditiva/fisiologia
2.
Psychophysiology ; 57(7): e13400, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206732

RESUMO

The role of the hippocampus in P300 has long been debated. Here, we present a theoretical framework that elucidates hippocampal contributions to scalp P300 based on intracranial and lesion research combined with emerging evidence on the role of the hippocampus in rapid statistical learning, memory, and novelty processing. The P300 has been divided in two subcomponents: a fronto-central P3a related to novelty and distractor processing, and a parietal P3b related to target detection. Interest in a role for hippocampus in scalp P300 was sparked by P3-like ERPs measured intracranially in human hippocampus. Subsequent medial temporal lobe lesion studies show intact scalp P3b, indicating that the hippocampus is not critical for P3b. This contrasts with the scalp P3a, which was significantly diminished in human patients with lesions in the posterior hippocampus. This suggests a differential role for hippocampus in P3a and P3b. Our framework purports that the hippocampus plays a central role in distractor processing that leads to P3a generation in cortical regions. We also propose that the hippocampus is involved at the end of the cognitive episode for both P3a and P3b implementing contextual updating. P3-like ERPs measured in hippocampus may reflect input signals from cortical regions implementing updates based on the outcome of cognitive processes underlying scalp P3, enabling a model update of the environment facilitated by the hippocampus. Overall, this framework proposes an active role for the hippocampus in novelty processing leading up to P3a generation, followed by contextual updating of the outcome of both scalp P3a and P3b.


Assuntos
Eletroencefalografia , Potenciais Evocados P300/fisiologia , Hipocampo/fisiologia , Lobo Temporal/fisiologia , Humanos
3.
J Neurophysiol ; 115(4): 2224-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26864760

RESUMO

Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13-30 Hz) and high-gamma bands (60-180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Córtex Motor/fisiologia , Inibição Neural , Adulto , Atenção , Ritmo beta , Feminino , Ritmo Gama , Humanos , Masculino , Córtex Motor/fisiopatologia , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...