Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 53(24): 3922-33, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24871270

RESUMO

The human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series of iron-regulated surface determinant (Isd) proteins. The cell wall anchored IsdB protein is recognized as the predominant Hb receptor, and is comprised of two NEAr transporter (NEAT) domains that act in concert to bind, extract, and transfer heme from Hb to downstream Isd proteins. Structural details of the NEAT 2 domain of IsdB have been investigated, but the molecular coordination between NEAT 2 and NEAT 1 to extract heme from hemoglobin has yet to be characterized. To obtain a more complete understanding of IsdB structure and function, we have solved the 3D solution structure of the NEAT 1 domain of IsdB (IsdB(N1)) spanning residues 125-272 of the full-length protein by NMR. The structure reveals a canonical NEAT domain fold and has particular structural similarity to the NEAT 1 and NEAT 2 domains of IsdH, which also interact with Hb. IsdB(N1) is also comprised of a short N-terminal helix, which has not been previously observed in other NEAT domain structures. Interestingly, the Hb binding region (loop 2 of IsdB(N1)) is disordered in solution. Analysis of Hb binding demonstrates that IsdB(N1) can bind metHb weakly and the affinity of this interaction is further increased by the presence of IsdB linker domain. IsdB(N1) loop 2 variants reveal that phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid heme transfer from metHb to IsdB. Together, these findings provide a structural role for IsdB(N1) in enhancing the rate of extraction of metHb heme by the IsdB NEAT 2 domain.


Assuntos
Proteínas de Transporte de Cátions/química , Hemoglobinas/metabolismo , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Hemoglobinas/química , Metemoglobina/química , Ressonância Magnética Nuclear Biomolecular , Fenilalanina/química , Receptores de Superfície Celular/química , Staphylococcus aureus/metabolismo
2.
Biomol NMR Assign ; 8(1): 201-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23686822

RESUMO

Staphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdB(N1)). Herein, we report the near complete (1)H, (13)C and (15)N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight ß-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein-protein interactions critical for heme capture and transfer.


Assuntos
Proteínas de Transporte de Cátions/química , Hemoglobinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Receptores de Superfície Celular/química , Staphylococcus aureus/metabolismo , Isótopos de Carbono , Hidrogênio , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...