Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1741-1751, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38184844

RESUMO

An anaerobic dynamic membrane bioreactor (AnDMBR) mimicking rumen conditions was developed to enhance the hydrolysis of lignocellulosic materials and the production of volatile fatty acids (VFAs) when treating food waste. The AnDMBR was inoculated with cow rumen content and operated at a 0.5 day hydraulic retention time, 2-4 day solids retention time, a temperature of 39 °C, and a pH of 6.3, characteristics similar to those of a rumen. Removal rates of neutral detergent fiber and acid detergent fiber of 58.9 ± 8.4 and 69.0 ± 8.6%, respectively, and a VFA yield of 0.55 ± 0.12 g VFA as chemical oxygen demand g volatile solids (VS)fed-1 were observed at an organic loading rate of 18 ± 2 kg VS m-3 day-1. The composition and activity of the microbial community remained consistent after biofilm disruption, bioreactor upset, and reinoculation. Up to 66.7 ± 5.7% of the active microbial populations and 51.0 ± 7.0% of the total microbial populations present in the rumen-mimicking AnDMBR originated from the inoculum. This study offers a strategy to leverage the features of a rumen; the AnDMBR achieved high hydrolysis and fermentation rates even when treating substrates different from those fed to ruminants.


Assuntos
Alimentos , Eliminação de Resíduos , Bovinos , Animais , Feminino , Anaerobiose , Biomassa , Rúmen , Hidrólise , Detergentes , Reatores Biológicos , Fermentação , Ácidos Graxos Voláteis
2.
Water Environ Res ; 94(4): e10715, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35388572

RESUMO

Solids from wastewater treatment undergo processing to reduce mass, minimize pathogens, and condition the products for specific end uses. However, costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) challenge traditional landfill and land application practices. Incineration can overcome these issues but has become complicated due to evolving emissions regulations, and it suffers from poor public perception. These circumstances are driving the re-emergence of pyrolysis and gasification technologies. A survey of suppliers was conducted to document differences with technologies. Both offer advantages over incineration with tailored production of a carbon-rich solid, currently less stringent air emission requirements, and lower flue gas flows requiring treatment. However, incineration more simply combines drying and thermal processing into one reactor. Equipment costs provided favor pyrolysis and gasification at lower capacities but converge with incineration at higher capacities. Long-term operational experience will confirm technology competitiveness and elucidate whether pyrolysis and gasification warrant widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are gaining traction in the wastewater industry with several full-scale installations operating, in construction, or design Several advantages, but some disadvantages, are considered in comparison with incineration Organic contaminants, including PFAS, will undergo transformation and potentially complete mineralization through each process.

3.
Water Environ Res ; 94(3): e10701, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298843

RESUMO

Wastewater treatment generates solids requiring subsequent processing. Costs and contaminant concerns (e.g., per- and polyfluoroalkyl substances [PFAS]) are challenging widely used landfilling and land application practices. These circumstances are partly driving the re-emergence of pyrolysis and gasification technologies along with beneficial reuse prospects of the char solid residual. Previously, technologies experienced operational challenges leading to revised configurations, such as directly coupling a thermal oxidizer to the reactor to destroy tar forming compounds. This paper provides an overview of pyrolysis and gasification technologies, characteristics of the char product, air emission considerations, and potential fate of PFAS and other pollutants through the systems. Results from a survey of viable suppliers illustrate differences in commercially available options. Additional research is required to validate performance over the long-term operation and confirm contaminant fate, which will help determine whether resurging interest in pyrolysis and gasification warrants widespread adoption. PRACTITIONER POINTS: Pyrolysis and gasification systems are re-emerging in the wastewater industry. Direct coupling of thermal oxidizers and other modifications offered by contemporary systems aim to overcome past failures. Process conditions when coupled with a thermal oxidizer will likely destroy most organic contaminants, including PFAS, but requires additional research. Three full-scale facilities recently operated, several in construction or design that will provide operating experience for widespread technology adoption consideration.

4.
Water Environ Res ; 93(6): 826-843, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33190313

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a recalcitrant group of chemicals and can be found throughout the environment. They often collect in wastewater systems with virtually no degradation prior to environmental discharge. Some PFAS partitions to solids captured in wastewater treatment which require further processing. Of all the commonly applied solids treatment technologies, incineration offers the only possibility to completely destroy PFAS. Little is known about the fate of PFAS through incineration, in particular, for the systems employed in water resource recovery facilities (WRRF). This review covers available research on the fate of PFAS through incineration systems with a focus on sewage sludge incinerators. This research indicates that at least some PFAS destruction will occur with incineration approaches used at WRRFs. Furthermore, PFAS in flue gas, ash, or water streams used for incinerator pollution control may be undetectable. Future research involving full-scale fate studies will provide insight on the efficacy of PFAS destruction through incineration and whether other compounds of concern are generated. PRACTITIONER POINTS: Thermal processing is the only commercial approach available to destroy PFAS. Thermal degradation conditions required for destruction of PFAS during incineration processes are discussed. Fate of PFAS through water resource recovery facility incineration technologies remains unclear. Other thermal technologies such as smoldering combustion, pyrolysis, gasification, and hydrothermal liquefaction provide promise but are in developmental phases.


Assuntos
Incineração , Recursos Hídricos , Esgotos , Águas Residuárias
5.
Bioresour Technol ; 245(Pt A): 1245-1257, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941664

RESUMO

Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering.


Assuntos
Celulose , Biomassa , Digestão , Hidrólise , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...