Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 147, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047970

RESUMO

MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g-1 at a charge/discharge current density of 1.0 A g-1 in a 2.0 mol L-1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.

2.
Phys Chem Chem Phys ; 25(13): 9559-9568, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939519

RESUMO

Niobium disulfide is a layered transition metal dichalcogenide that is being exploited as a two-dimensional material. Although it is a superconductor at low temperatures and demonstrates great potential to be applied as a catalyst or co-catalyst in hydrogen evolution reactions, only a few reports have demonstrated the synthesis of a few-layer NbS2. However, before applications can be pursued, it is essential to understand the main characteristics of the obtained material and its stability under an atmospheric environment. In this work, we conducted a thorough characterization of redox-exfoliated NbS2 nanoflakes regarding their structure and stability in an oxygen-rich environment. Structural, morphological, and spectroscopic characterization demonstrated different fingerprints associated with distinct oxidation processes. This led us to identify oxide species and analyse the stability of the redox exfoliated NbS2 nanosheets in air, suggesting the most likely reaction pathways during the NbS2 interaction with oxygen, which agrees with our density-functional theory results. The mastery over the stability of layered materials is of paramount importance to target future applications, mainly because the electronic properties of these materials are strongly affected by an oxidizing environment.

3.
Chem Commun (Camb) ; 56(5): 802-805, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31848555

RESUMO

We present the unprecedented application of a black phosphorus-based nanocomposite as an electrode for aqueous Na-ion batteries under ambient conditions. An impressive specific capacity of up to 200 mA h g-1 was reached after 50 cycles in a NaCl aqueous solution used as a supporting electrolyte. Post-characterization indicated the integrity of the black phosphorus.

4.
Sci Rep ; 7(1): 10165, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860636

RESUMO

The greatest challenge regarding black phosphorus (BP) comes as a result of its fast degradation when exposed to ambient conditions, which has overshadowed its applications. Herein, we report a simple and efficient route towards overcoming BP deterioration by preparing a nanocomposite with the conducting polymer polyaniline (PANI). The liquid/liquid interfacial method was employed to produce transparent, freestanding and transferable thin film of BP covered by PANI, with high stability under ambient atmosphere, up to 60 days. Otherwise, the uncapped exfoliated neat BP degraded in solely 3 days under the same conditions. Characterization data show that PANI covers efficiently the BP flakes, indicating favorable interactions between the components. The results presented here can be considered a breakthrough for employing BP as thin film in different technological applications, considering the properties of BP itself or taking advantage of synergistically combining the properties of both components.

5.
J Colloid Interface Sci ; 467: 239-244, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803603

RESUMO

We report a novel pKa determination for different graphene-like samples: graphene oxide (GO), reduced GO (rGO), graphene nanoribbons (GNR), oxidized GNR (GONR), thiol- and imidazole-functionalized GO (GOSH and GOIMZ, respectively) and thiol-functionalized GONR (GONRSH). Using the specialized computational program BEST7 for treating titration curves, pKas for different functional groups were discriminated (confirmed by infrared spectra) and their composition quantified. Overall, three equilibria were distinguished, two relative to carboxylic acids exhibiting different acidic degrees (pKa1∼4.0 and pKa2∼6.0) and one relative to alcohols (pKa4∼10.0). Upon functionalization on carboxylate sites, thiol (pKa(GOSH/GONRSH)=6.7) and imidazole (pKa(GOIMZ)=6.6) moieties were discerned, followed by a decrease of their carboxylate percentage (compared to the precursors), thus allowing determining the degree of functionalization (48% and 36% of thiol content for GOSH and GONRSH respectively, and 29% of imidazole for GOIMZ). The proposed method is innovative and simpler when compared to the traditional tools usually employed to quantify chemical functionalization.

6.
Chem Commun (Camb) ; 50(69): 9891-4, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25026937

RESUMO

The present study reports for the first time the use of a thiol-functionalized graphene oxide nanocatalyst with impressive activity (>10(5)-fold) in dephosphorylation reactions. The innovative and recyclable nanocatalyst has potential in designing artificial enzymes with targeted multifunctionalities and in detoxification of organophosphorus agents.


Assuntos
Materiais Biomiméticos/química , Grafite/química , Nanoestruturas/química , Compostos Organofosforados/química , Óxidos/química , Compostos de Sulfidrila/química , Biocatálise , Catálise , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...